С начала 2000-х годов с завидной периодичностью появляются новости о внедрении в работу чат-ботов. В этой статье я расскажу с чего начать и приведу обзор существующих решений, а также поделюсь опытом создания бота для компании Selectel.
Сфера применения
Развитие бизнеса зачастую сопровождается не только масштабированием основной деятельности, но и отладкой поддерживающих процессов. Чат-боты — только часть деятельности бизнеса в рамках автоматизации рутины. Коммуникация и выполнение простых однотипных заданий лежат в основе работы чат-бота. С его помощью можно выполнять не только повторяющиеся задачи, но и такие, которые человек выполнить не в состоянии, например, мониторинг активности в социальных сетях.
Разнообразие сфер применения ботов я хочу привести на примере собственной работы в компании Selectel. Мини-спойлер: начинал свою работу я в качестве технического писателя, теперь являюсь инженером отдела облачных решений. Путь внедрения виртуальных помощников начался с бота для отдела маркетинга, который отслеживает комментарии и упоминания компании в социальных сетях. Такая разработка является очень простой, но эффективно дополняет существующие решения на рынке, например, сервис IFTTT.
Следующими разработками в моей практике стали внутренний чат-бот для отдела HR и бот для общения с клиентами, представленный в качестве демо-стенда во время конференций SelectelTechDay в Санкт-Петербурге и Москве. Оба бота созданы с помощью разных сервисов и технологий. И прежде чем погружаться в технические подробности, рассмотрим верхнеуровневую схему устройства ботов.
Основные принципы ботостроительства
Деятельность чат-ботов строится вокруг 3 основных действий:
- Получение или вывод информации происходит через определенные каналы связи, например, в Slack или диалогах Vk.com
- Распознавание намерения — это комплексный анализ полученной информации для формирования ответа
- Обработка действия — любая работа, проведенная на серверной стороне, необходимая для подготовки верного ответа. Например, если был запрошен прогноз погоды, то будет произведен запрос к некому API о погоде в городе N, и пользователю будут отправлены результаты этой команды
Основные действия чат-ботов объединяются в рамках задачи сохранения контекста для создания человекоподобной формы общения и поддержки диалога. Чат-бот должен «помнить» предмет разговора и адаптировать свои ответы соответствующим образом.
Отдельно выделяется вопрос подключения чат-бота к социальным платформам. Коннекторы к мессенджерам и социальным сетям могут быть реализованы самостоятельно или поддерживаться в рамках существующих продуктов для создания чат-ботов.
На данный момент есть множество решений, предлагающих готовый сервис по автоматизации процессов технической поддержки или продаж. Я же больше внимания уделю инструментам, которые позволяют создать сервис, отвечающий внутренним требованиям по безопасности компании, без усложнения процесса разработки.
Ботостроительство
Изложенные выше 3 принципа работы чат-ботов (канал, анализ, действие) можно реализовать по-разному. Самый простой вариант — проводить сравнения поступающего текста и отправлять пользователю соответствующие ответы.
Наша цель немного выше — получить систему, в которую можно будет быстро добавлять новые сценарии и которая будет понимать пользователя в большинстве случаев.
Для этого нам необходимо понимать, о чем говорит пользователь, контролировать ход диалога и в некоторых случаях выполнять определенные действия (например, бронировать переговорные комнаты). Добиться этого можно, используя следующие инструменты:
- DialogFlow (Google)
- Wit.ai (Facebook)
- Azure Bot Service (Microsoft)
- Rasa Core (Open Source)
При выборе продукта учитываются следующие факторы:
- Насколько критично размещение исполняемого кода бота в рамках существующих систем
- Например, в случае Wit.ai и Dialogflow мы не контролируем полностью весь процесс — мы отдаем этим приложениям текст и получаем готовый ответ. Используя Rasa Core или Azure BotBuilder SDK, мы можем хранить всю переписку в границах внутренних систем
- Сколько каналов связи необходимо подключить
- Dialogflow предоставляет возможность использования ограниченного количества коннекторов, которые подключают мессенджеры и социальные сети через указание ключей доступа. Для Wit.ai и Rasa Core можно использовать любое количество каналов, но логику подключения к ним необходимо реализовать самостоятельно (зачастую это очень тривиальная задача). Azure Bot Service имеет возможность использования коннекторов к определенным каналам, но не ограничен ими, и его можно подключать также к другим источникам самостоятельно
- Насколько просто можно вносить изменения в базу знаний бота
При создании бота в виде программного кода без использования визуального интерфейса для взаимодействия с ним мы ограничиваем круг лиц, кто может вносить изменения в диалоги и ответы бота. Функционал добавления и редактирования фраз должен быть доступен для каждого
Для нашего внутреннего виртуального помощника чат-бота Тирекса была выбрана платформа от Google Dialogflow, которая предоставляет возможность визуального редактирования намерений, а выполнение действий осуществляется внутри частного облака в Selectel. Определяющими факторами стали скорость начала работы с ботом, безопасность при передаче сообщений и наличие канала Slack в списке поддерживаемых.
Идея создания чат-бота давно витала в воздухе компании, особенно учитывая, какие проблемы можно было решить с ним:
- Рост числа сотрудников компании, а вместе с этим увеличивающийся поток однотипных вопросов вроде «Как пользоваться корпоративной библиотекой?» и «Где пообедать?»
- Регулярное бронирование переговорных и оформление пропусков
- Поиск информации и документов в корпоративной базе знаний
Создание и подключение бота в Dialogflow занимает несколько минут. В начале рассмотрим принципы работы чат-бота в системе, а затем добавим выполнение сложных действий.
Создание бота в Dialogflow
Создание архитектуры
Далее в тексте мы будем оперировать такими понятиями, как:
- Намерение — формализованная задача, которую хочет выполнить пользователь
- Параметры — набор данных, необходимых для выполнения задачи
- Ответ — функция или программа, выполняемая в ответ на распознанное намерение
- Тренировочная фраза — пример сообщения от пользователя, на котором чат-бот обучается
Dialogflow обрабатывает естественный язык и извлекает все необходимые данные для выполнения сложных команд. Для этого создаются агенты, которые содержат в себе несколько намерений. Каждое из намерений позволяет подготовить чат-бот к пониманию нюансов и тонкостей при формулировании запросов.
Намерение включает в себя тренировочные фразы, параметры и ответы. Внутри тренировочной фразы мы выделяем параметры (например, время или место), которые необходимы для формирования корректного ответа.
Ответ указывается либо в намерении, либо Dialogflow отправляет запрос на наш сервер, который выполняет необходимую работу и возвращает обратно ответ на примере нашего чат-бота:
- На простые вопросы (например, «Есть ли у нас программа страхования заграницей?») ответ закладывается в намерение
- На более сложные задачи как «Есть ли свободные переговорные сейчас?» ответ формируется с помощью дополнительного запроса к серверу, который определяет свободное время для всех участников и комнат
Работа с намерениями
Рассмотрим работу с Dialoglow на примере бронирования переговорной. Мы создаем агент управления бронированиями и определяем следующие намерения:
- Просмотреть существующие бронирования
- Забронировать переговорную
Каждое из намерений вызывается тренировочными фразами. Чем больше их добавлено, тем вероятнее будет выполнено нужное действие. В нашем примере намерение «Забронировать переговорную» будем вызывать следующими фразами:
- Забронируй на сегодня в 23.15 на 30 минут на меня
- Привет. Прошу забронировать на 08.11.2018 переговорную с 15:00 до 16:00
- Забронируй
- Мне нужна переговорная
Принцип работы сбора данных в намерениях следующий:
- Dialogflow на основе полученного ввода понимает, о каком намерении идет речь. В нашем примере — бронирование переговорных
- Если обязательные параметры не были указаны в первом сообщении (например, время встречи), то чат-бот задаст уточняющие вопросы
- После получения всех данных Dialogflow отправит запрос на наш сервер в VPC для бронирования нужной комнаты
Посмотрим на этот процесс в действии:
Обработка действия осуществляется отправкой запроса со всеми данными на заранее добавленный адрес сервера действий (Webhook URL):
По адресу
website.ru/webhook находится сервер, который выполняет обработку сложных команд (в нашем примере возвращает строку «Привет от сервера!»).
Github Gist для быстрого старта:
Создание бота с помощью RASA
Для использования чат-бота без сторонних сервисов для распознавания текста можно использовать инструменты наподобие
Rasa, которые позволяют полностью управлять всем процессом работы бота. Rasa — набор программных компонентов с открытым исходным кодом, которые содержат распознавание речи и управление диалогами. Уже сейчас можно посмотреть на
Boilerplate, который я подготовил для знакомства с платформой, а более подробную инструкцию мы опубликуем, если будут запросы от Habr-сообщества.
Чат-боты и бизнес
Использовать ли сервисы автоматизации для клиентского обслуживания — непростой вопрос. Современные инструменты предоставляют множество решений при выборе между гибкостью, скоростью начала работы и безопасностью. Системы распознавания намерений в естественном языке теперь доступны не только в проприетарном виде, но и свободно распространяются, что открывает большие возможности для собственных экспериментов. Мы рассмотрели один из вариантов, который позволяет быстро внедрить чат-ботов для автоматизации однотипных задач вашего бизнеса без капитальных затрат и с минимальными трудозатратами.
Если вы в работе уже применяете чат-ботов, поделитесь обратной связью в комментариях о своих впечатлениях и, конечно, впечатлениях ваших клиентов.