Product updates [September 30, 2019] - [March 2, 2020]



COMPUTE
Compute Engine — изменить название памяти, оптимизированные виртуальные машины: GA
Для того, чтобы более четко определить экземпляры VM в качестве членов машины типа семейства памяти оптимизированных все n1-ultramem и n1-megamem виртуальных машины имели их префикс «n1» изменен на «m1». Документация
Compute Engine — постоянные дисковые запланированные моментальные снимки: GA
Используйте SNAPSHOT расписание регулярно и автоматически создавать резервные копии ваших рабочих нагрузок Compute Engine, а также ваши зональные и региональные упорные дисков. И определить, как долго держать снимки с политикой хранения снимков. Документация
Compute Engine — пользовательский контроллер интерфейса виртуальной сети: бета
Включите более высокую пропускную способность сети с более эффективной сетью доставки для отправки трафика и от ваших экземпляров виртуальных машин. Специально разработанный для Compute Engine, то gVNIC устройство и драйвер будет работать на всех Google Cloud виртуальных машин, кроме памяти оптимизированных типов машин. Документация
Kubernetes двигателя — контейнер родной балансировки нагрузки: GA
Повышение видимости трафика, производительность и масштабируемость за счет создания услуг с использованием сети оконечных групп (NEGS). NEGS обеспечить запросы к вашим услугам распределены непосредственно в контейнеры, обслуживающих запросы. Документация | Блог
Kubernetes двигатель — дозирующее использование: GA
Просмотр профилей использования кластеров Kubernetes двигателя и связать использование отдельных команд, бизнес-единица, приложения или среды в вашей организации на основе имен и ярлыков. дозирующее Использование облегчает принятие Kubernetes в среде многопользовательской. Документация
Kubernetes двигателя — containerd: GA
Использование containerd вместо Докер в качестве контейнера для выполнения Kubernetes на контейнерном оптимизированным OS и Ubuntu для выполнения приложений внутри контейнеров и ручка взаимодействия с базовой операционной системой. Документация
Kubernetes двигатель — окна обслуживания: бета
Поддерживайте больший контроль над вашими кластерами Kubernetes Engine с возможностью настройки времени автоматического обслуживания кластера, например, когда авто-обновление может и не может произойти. Документация
Kubernetes двигатель — доступ частный мастер кластера из локальных: беты
Поддерживать строгую безопасность и соблюдение, позволяя родную связь между сетью локальных и Google принадлежащей сетью VPC, что Саваофа мастером-кластером. Документация
Облако Run — метки: бета
Установить, изменять и удалять ярлыки на вашей службы и пересмотров Cloud Run. Используйте метки для фильтра счетов, журналов, метрики и других данных для идентификации ресурсов, используемых отдельными владельцы, командами или центры затрат для распределения затрат и выставления счетов срывов. Документация
Облако Run — расширение отчетов об ошибках и масштабирования метрик: бета
Используйте Stackdriver, чтобы отслеживать, сколько экземпляров активно служу трафик для службы с новой схемой «Billable контейнера времени экземпляра», и просматривать лучшие ошибки приложения в этой службе с таблицей «Error Reporting». Документация
Облако Run — одинарный поддержка КПГР: бета
Развертывание КПГР услуги Cloud Run — теперь с поддержкой одинарных КПГР вызовов. КПГР является высокопроизводительным, с открытым исходным кодом рамки универсальной RPC. Документация
Compute Engine — N2 типа общего назначения машины: GA
Создать широкий спектр предустановленных или пользовательских экземпляров VM с нашими новыми типами N2 машин. На основе процессоров второго поколения Intel Xeon масштабируемой, типы машин N2 предлагают до 80 виртуальных ЦП и в общей сложности 640 Гб памяти, на базовой частоте 2,8 ГГц, и пролонгированное все-жильный турбо до 3,4 ГГц. Документация
Compute Engine — зональные оговорки: GA
Убедитесь, что ваш проект имеет ресурсы для будущего спроса, в том числе дорожных шипов, большие миграции, резервного копирования и аварийного восстановления, а также запланированного роста. Резервные ресурсы, включая местные, виртуальные ЦП твердотельных накопителей, а также графические процессоры в определенной зоне — и добавить совершенное использование скидки для большей экономии. Документация
Compute Engine — повышенная производительность системы хранения данных блока: GA
SSD упорные диски теперь предлагают удвоить пропускную способность от записи для экземпляров VM с 16 или более ядер и 100K IOPS чтения для экземпляров VM с 64 или более ядер. Документация
Compute Engine — увеличение общей емкости для постоянных дисков: GA
Приложить до 257 ТБ постоянной памяти на диске для каждого экземпляра VM — значительный прирост по сравнению с предыдущим лимитом 64 ТБ. Документация
Compute Engine — OS Войти Политика и ведение журнала аудита: GA
Управление доступом к экземплярам с политикой организации и ведения журнала аудита для обеспечения того, чтобы все новые проекты, а также экземпляры виртуальных машин, созданных в них, имеют OS Логин включен. Отслеживание событий и мероприятий, как добавление, удаление или обновление ключа SSH, или удаление информации POSIX. Документация
Google Kubernetes Engine — Rapid, Regular, и стабильные каналы выпуска: бета
Создание новых кластеров с помощью Rapid, Regular, или стабильный канал выхода. Каналы представляют уровень стабильности и свежесть версий GKE, и вы можете выбрать канал наиболее выровненный с профилем риска и потребностями бизнеса. Документация
GKE — вертикальный стручок автомасштабирование: GA
Получить более стабильной, эффективной стручки автоматически. Если эта функция включена, вертикальная черта стручок автомасштабирования рекомендует, и может автоматически обновлять, память и процессор запросы и ограничение для контейнеров в ваших стручках на основе наблюдаемого использования. Документация
GKE — узел автоматической инициализации: GA
Создать новый пул узла в кластере GKE autoscaler, если ни один из существующих пулов узлов не может вместить в ожидании стручков или при работе стручков на новом пуле узлов значительно дешевле. Документация
App Engine — Java 11 на стандартной среде App Engine: GA
Создание и развертывание приложения с Java 11, который работает надежно под нагрузкой тяжелой и с большими объемами данных. Запустите приложение в своей собственной безопасной, надежной среде, независимо от аппаратного обеспечения, операционной системы, или физического местоположения сервера. Документация
Google Kubernetes Engine — Пакетное на GKE: бета
Запустите пакетные нагрузки в облаке с использованием Kubernetes с гибкими средствами, которые динамически размещаемыми в соответствии с вашими потребностями и бюджет. Создание очередей, расставить приоритеты заданий и зависимости ручки с функциями и фамильярности традиционного пакетного задания планировщика. Документация
Compute Engine — расширение EGRESS ограничения на малых случаях VM: GA
Наслаждайтесь повышенной пропускной способностью для ваших маленьких экземпляров VM автоматически. Мы увеличили максимальную скорость исходящего трафика для всех новых и существующих виртуальных машин с двумя и четырех до 10 виртуальных ЦП Gbps — без дополнительных действий, требуемых от вас. Документация
Compute Engine — 100 Gbps виртуальные машины: бета
Достижение 50-100 Гбит пропускной способности сети VM для экземпляров V100 и Т4 ГПУ VM с помощью виртуальной сетевой интерфейс Compute Engine (gVNIC). Документация
Compute Engine — operations.wait: GA
Снизить частоту опроса состояния операции и помогают более эффективно использовать ваши запросы-за-вторых квот. Глобальные, региональные и зональные operations.wait методы ждать указанной операции ресурс для возврата, как это сделано, или для запроса, чтобы поразить двухминутный срок, а затем получить его. Документация
Compute Engine — отключить или ограничить автомасштабирование в управляемых группах экземпляра: GA
Возьмите под свой контроль над размером ваших зональных или региональных управляемых групп например, путем временного отключения или ограничений направления автомасштабирования только масштабы, все, сохраняя при этом своей конфигурации, так что он может быть включен снова. Документация
Compute Engine — единственный арендатор VM аренда миграция: GA
Перемещение между многопользовательским и единственным арендатором узлами, или между узловыми группами единственным арендатора корректировать договор аренды на основании требований рабочей нагрузки. Документация
Compute Engine — принести вам собственную лицензию (бель) V2: бета
Запустите рабочую нагрузку для Windows — и использовать существующие лицензии ОС Windows — на Compute Engine. Новые функции включают в себя объединение ресурсов единственного нанимателем узлов и способность к экземплярам бели жить Migrate для событий технического обслуживания для других узлов в бассейне без каких-либо простоев. Документация
Compute Engine — единоличный-арендатор autoscaler: бета
Автоматически управлять размером ваших групп узлов единственным арендатора. Настройка группы узлов autoscaler для создания дополнительных экземпляров виртуальных машин, когда есть недостаточная пропускная способность и удаление пустых узлы, чтобы уменьшить затраты. Документация
Compute Engine — сохраняющие состояние управляемых групп экземпляров: бета
Построить высокодоступные развертываний с состоянием рабочих нагрузок, таких как базы данных, по обработке данных приложений, унаследованных монолитные приложения, и долго выполняющиеся пакетные вычисления с контрольной точки. Улучшение работоспособности и устойчивости при сохранении уникального состояния каждого экземпляра. Документация
Compute Engine — управляемый экземпляр группа свитки проверка: GA
Проверить, является ли обновление свитка была завершена с gcloud инструментом командной строки или API. Или использовать Cloud Console интерфейс Google, чтобы увидеть текущее и планируемое количество экземпляров обновляются. Документация
Compute Engine — настроить региональный управляемый экземпляр группы перебалансирование: GA
Контроль следует ли сохранить или отключить поведение перераспределения региональных групп управляемых экземпляров — балансирует ли региональная управляемый экземпляр группа экземпляры активно, как это делает сейчас по умолчанию, или оппортунистический, при изменении размера группы. Документация

DATA АНАЛИТИКА
Облако Dataproc — поддержка GPU: GA
Повышение производительности рабочих нагрузок, в том числе машинного обучения и обработки данных, путем присоединения графических процессоров (GPU) для ведущего и рабочих узлов Compute Engine в кластере Облако Dataproc. Выберите один из вариантов, включая NVIDIA Tesla P100, V100, и Р4 графических процессоров. Документация
BigQuery ML — K-средства кластеризации поддержки: GA
Используйте неконтролируемое обучение для агрегирования данных в кластеры и идентифицировать естественные группировки. К-средства алгоритм используется для всего, от понимания сегментации клиентов в области компьютерного зрения и астрономии. Документация
Облако Dataprep по Trifacta — API и улучшенной функции: GA
Управление и мониторинг заданий подготовки данных программно поставить воспроизводимые результаты данных с API Cloud Dataprep. И подготовка делают данные более интуитивной с новыми функциями, включая макросы, преобразование примера, и кластер чистые. Документация
Облако Dataflow — Python потоковый режим: GA
Исследуйте новейшее Облако DataFlow потокового вариант для трубопровода Python, включая AutoScale, процедить, обновление Streaming Engine и обновление счетчика. Документация
поддержка Python 3 — Cloud Dataflow: GA
Автор ваших трубопроводов Apache Beam в Python 3 и запустить на облаке DataFlow. Apache Beam прекратит поддержку Python 2 в новых версиях, начиная с 1 января 2020. Мы рекомендуем пользователям Облако DataFlow перенести свои трубопроводы на Python 3. Документация
BigQuery — аудит журналы v2: GA
Получить более полное представление о ваших ресурсах BigQuery с BigQueryAuditMetadata, более новым форматом журнал аудита сообщений. Понимание взаимодействия ресурсов и определить, какие таблицы были прочитаны и записаны с помощью данного задания запроса и таблицы, которые истекли. Документация
BigQuery и BigQuery ML — новый регион: GA
BigQuery и Biguery ML теперь доступны в Южной Каролине (США) Восток1 региона. Примечания к выпуску
Облако Dataflow — Гибкое ресурсов Планирование: GA
Сокращение затрат пакетной обработки — без изменения коды трубопровода. FlexRS использует передовые методы планирования, DataFlow Перемешать и сочетание Preemptible экземпляров виртуальных машин и регулярных виртуальных машины, чтобы сократить расходы рабочих до 40%. Документация
BigQuery Transfer Data Service — учетная запись службы поддержки: бета
Настройка запланированного запроса для проверки подлинности с помощью аккаунта Google, связанного с проектом Google Cloud Platform. Затем учетная запись может выполнять задания, связанные со своими учетными данными службы, а не учетные данные конечного пользователя, таких как запланированная запроса. Документация
BigQuery — целое число, на основе диапазона разделение: бета
Создание и использование таблиц секционированных целого числа столбец в BigQuery. Просто указать диапазон целого числа на основе и таблица будет разделена в соответствии с целочисленных значений в этом столбце. Документация
Облако данных Fusion: GA
Оцифровка, чистят, преобразования и интеграции данных из SAP HANA, Teradata, MongoDB, Salesforce, и многое другое. Выберите из широкой библиотеки предварительно настроенных коннекторов и преобразований, используя визуальный интерфейс точки и нажмите для кода свободного развития ETL и ELT трубопроводов. Документация
Cloud Storage — BigQuery Передача данных Услуга: GA
Расписание повторяющихся нагрузок данных от Cloud Storage в BigQuery. Теперь вы можете загрузить данные по установленному графику — и загружать только новые данные в таблицу назначения. Документация
Облако Dataproc — SparkR типы заданий: GA
Использование dplyr подобные операциям на наборах данных практически любого размера, хранящихся в Cloud Storage с помощью SparkR, пакет, который обеспечивает легкий конец переднего использовать Apache искру от R. SparkR также поддерживает распределенные машинное обучение с использованием MLlib. Документация
BigQuery ML — предварительная обработка данных: GA
Streamline и упростить вашу модель машинного обучения строит — и поддерживать преобразования в соответствии между обучением и умозаключениями. Preprocess и преобразование данных с помощью простых функций SQL и автоматически применить эти преобразования на этапе прогнозирования. Блог | Документация | Руководство
Потоковый — наблюдаемость: GA
Просмотр трубопровода, а также любую другую работу, с интерфейсом мониторинга Dataflow веб-основе. См и взаимодействовать со списком заданий DataFlow. Проверка состояния, выполнения и SDK версии задания, выполните. И найти ссылки на информацию об услугах, работающих под управлением вашим трубопровод. Блог | Документация

БАЗА ДАННЫХ
Облако Datastore — удалось экспорта и импорта услуги: GA
объекты экспорта и импорта Облако Datastore с помощью облачной консоли, инструмент gcloud командной строки, или API Cloud Датастор. Используйте службу, чтобы оправиться от случайного удаления данных и экспорта данных для автономной обработки. Документация
Облако Bigtable — новый регион: GA
Облако Bigtable теперь доступен в Франкфурте, Германия, (Европа-west3) регион — и каждый текущем регион GCP — дает вам доступ к Cloud Bigtable в регионе по вашему выбору. Документация
Облако SQL — ключи шифрования клиент-управляемых (CMEK): GA
Зафиксируйте ваши конфиденциальные или регулируемые данные с CMEK, чтобы управлять своими собственными ключами шифрования данных в состоянии покоя. С поддержкой CMEK, Cloud SQL использует ключ клиента для доступа к данным. Документация
Облако SQL — политика организации связи: GA
Централизованное управление настройками публичных IP для Cloud SQL, чтобы уменьшить поверхность атаки безопасности экземпляров Cloud SQL из Интернета. Ограничение доступа к экземплярам Cloud SQL: разрешить только частный доступ к IP или разрешить только Cloud SQL прокси доступ к IP-адрес. Документация
Облако Bigtable — идентичность на уровне таблиц и управления доступом: GA
Используйте таблицу уровня IAM контролировать уровень каждого пользователя доступа к отдельным таблицам Cloud Bigtable. Документация
Cloud Storage — Архив Класс хранения: GA
Хранить практически любой объем данных на нашей нижайшую стоимости услуги хранения с 11 девяток долговечности — и поддерживать доступ с миллисекундой латентностью. Используйте его для хранения холодных данных, аварийного восстановления, или для данных, которые вы планируете получить доступ менее чем один раз в год. Блог | Документация

МИГРАЦИЯ
Migrate для Anthos: бета
Автоматическое преобразование и перенос экземпляров виртуальных машин — будь то на территории, на Google Cloud Platform, или на другие облака — к контейнерам в Kubernetes Engine. Перенесенные рабочие нагрузки полностью совместимы с GCP услуг, в том числе решений Stackdriver, Istio и Kubernetes в ГКП Marketplace. страница продукта
Migrate для Anthos: GA
Миграция существующих VMware, Amazon EC2, Microsoft Azure, и Compute Engine виртуальных машин для контейнеров непосредственно на GKE в течение нескольких минут, свести к минимуму время простоя с потоковым миграции хранения, и автоматически преобразует рабочие нагрузки, как контейнеры в GKE стручков. заметки о выпуске
Перенесите для V4.8 Compute Engine: GA
Миграция Microsoft Azure экземпляры в Compute Engine с повышенным масштабом, снижением первоначального простоем и способностью контролировать окружающую среду источника облака во время миграции. Дополнительные функции включают возможность управления обновлением системы и установку исправлений с помощью пользовательского интерфейса системы. заметки о выпуске

AI & МАШИНА ОБУЧЕНИЯ
AI Платформа — пользовательские контейнеры: GA
Запускайте приложения в виде Докер изображения, создавая свой собственный контейнер для выполнения заданий на AI Platform. Использование машин рамок обучения и версий — а также не-ML зависимостей, библиотеки и двоичные файлы не иначе поддерживаются AI Platform. Документация
AI Platform — использовать предопределенные имена машины типа для конфигурирования учебной работы: GA
Получите большую гибкость при распределении вычислительных ресурсов для машинного обучения рабочих мест, используя имена некоторых предопределенных типов машин Compute Engine. Вы также можете настроить свои графические процессоры использует работу, когда обучение с TensorFlow или используя пользовательские контейнеры. Документация
Облако Video Intelligence API — обнаружение Логотип: бета
Обнаружить, отслеживать и распознавать присутствие более 100 000 марок и логотипов в видео-контенте. Документация
Dialogflow — проверка агента: бета
Автоматически проверять ваш агент на наличие ошибок, когда вы тренируете его. Доступ к результатам из Dialogflow консоли или API, и игнорировать или исправлять ошибки, управлять качеством и производительностью вашего агента. Документация
Dialogflow — регулярные выражения (регулярные выражения) для юридических лиц: GA
Теперь вы можете обеспечить регулярные выражения для создания агентов, структуры данных соответствуют друг другу — например, национальные идентификационные номера или номерных знаков — а не специфических терминов. Документация
Dialogflow — нечеткое соответствие: GA
Тратьте меньше времени и усилий построения объектов — и упростить разработку. Объект согласование требует точного совпадения для одной из записей сущностей. Нечеткие соответствия позволяют компаниям идентифицировать матчи значения или синоним независимо от порядка слов. Документация
AI Платформа Ноутбуки — поддержка CMEK для ноутбуков: бета
Использование ключей шифрования для клиента удалось зашифровать настойчивые диски на экземплярах ноутбуков. Документация
Облако AutoML Vision — классификация изображений: бета-обновление
Единая инфраструктура теперь поддерживает как объект классификации и обнаружение, и имеет встроенный интерфейс. Планируйте заранее и подготовить модели классификации для общедоступности AutoML Видения планируется провести в этом году. Используйте следующие шаги для обновления существующих моделей. Примечания к выпуску | Документация
Облако AutoML Vision — пакетный прогноз: бета
Использование пакетного прогнозирования для снижения затрат на умозаключения и более высокую пропускную способность, чем синхронный (онлайн) прогнозирования. Доступно как для классификации и обнаружения объектов. заметки о выпуске
Облако AutoML Видение — TensorFlow.js интеграция: бета
Модели Экспорт AutoML Зрение Пограничные как TensorFlow.js пакетов. Модель край может быть развернут в различных платформах с поддержкой TensorFlow.js, включая все основные браузеры — и на стороне сервера в Node.js. Доступно как для классификации и обнаружения объектов. заметки о выпуске
AutoML Таблица — ординатура данные для ЕС: бета
AutoML таблица теперь обеспечивает полную поддержку для пользователей с цензом оседлости данных ЕС. Документация
Контактный центр AI: GA
Автоматизация взаимодействия центра обработки вызовов и обеспечение бесшовной передачи обслуживания для человека агентов с виртуальным агентом. Использование агент Assist транскрибировать вызовы в режиме реального времени, идентифицировать клиент намерения, а также обеспечить в режиме реального времени, шаг за шагом помощь ваших живых агентов. Страница Решения
AutoML Natural Language — текст и классификация документов, анализ настроений, и экстракция организации: GA
Построение и развертывание пользовательских машинного обучения модели, анализирующие документы для того, чтобы классифицировать их, а также идентифицировать объекты и чувства в них. Блог | Документация
Облако Зрение API — мульти-региональная поддержка оптического распознавания символов (OCR): GA
Доступ OCR функции и выбрать, где ваши данные будут обрабатываться в двух новых регионах: США и Европейского Союза. Документация
AI Platform — встроенные классификации изображений и алгоритмы обнаружения объекта: бета
Поезд модели без написания кода с помощью встроенного в классификации изображений и обнаружения объектов алгоритмов. Используйте настройки гиперпараметра для большей точности, используйте TPUs для быстрой подготовки и экспорт моделей для прогнозирования, либо локально, либо развернуты AI Platform прогнозирования. Документация
Virtual Private Cloud (VPC) — использование VPC Service управления с обучением AI Платформа: бета
Снизить риск эксфильтрации данных из ваших учебных заданий, выполнив их из проекта внутри службы по периметру с помощью элементов управления VPC Service, чтобы гарантировать, что Ваши данные не покидает периметр — в том числе обучающих данных ваших заходов рабочих мест и артефакты, которые он создает. Документация
TensorFlow Enterprise — поддержка TensorFlow 2,1 на AI Платформа Deep Learning VM изображения: GA
Исследовать TensorFlow 2.1 функции, включая улучшение поддержки Cloud TPU, поддержку Intel MKL, смешанную точность подготовку для графических процессоров и TPU, и заплаток безопасности и исправления ошибок. Начало работы с TensorFlow предприятия на Deep Learning VM. страница продукта

ЗДРАВООХРАНЕНИЕ И НАУКИ О ЖИЗНИ
Облако Науки о жизни API: бета
Процесс, анализировать и аннотировать геномика и биомедицинские данные в масштабе с использованием контейнерных рабочих процессов с Cloud Life Sciences. Ранее известный как Google Genomics, платформа теперь доступна в регионе Iowa (нам-central1), с другими регионами в ближайшее время. Документация
Куратор решения теперь доступны в здравоохранении Marketplace: GA
Доступ к API Cloud Life Sciences и API Cloud Healthcare, а также широкий спектр решений, доступных на Google Cloud для медицинских и биологических наук, в здравоохранении Marketplace — и запустить их в облаке консоли с помощью всего лишь нескольких щелчков мыши. Здоровье Marketplace

API ПЛАТФОРМЫ & ECOSYSTEMS
Apigee Край для частной облачной 4.19.06: GA
Исследуйте несколько юзабилити, производительности, безопасности и улучшения стабильности в последнем обновлении. Обширный список новых функций включает в себя вставную аналитику и поддержку развертывания HTTP и Cassandra стеллажи. Страница продукта | Документация

CLOUD COMMERCE
GCP Marketplace — поддержка виртуальных машин с несколькими сетевыми интерфейсными платами: GA
несколько сетевых интерфейсов Настройка с пользовательским интерфейсом, который интегрирует Compute Engine и GCP Marketplace и добавляет новые развертывания Менеджер Autogen особенности упростить и автоматизировать создание виртуальных машин с несколькими сетевыми картами. Документация

БЕЗОПАСНОСТЬ
Облако Предотвращение потери данных — новый Google Cloud Platform Console пользовательский интерфейс: GA
Получите большую прозрачность и контроль над конфиденциальными данными с новым Cloud DLP UI. Проверьте и классифицировать данные в облачном хранилище, BigQuery и облачное DATASTORE хранилищ с несколькими щелчками мыши. Управление инспекции рабочих мест, создание шаблонов, а также изучить результаты в консоли. Документация
Облако Asset Inventory — Организация политика и поддержка политика доступа: GA
Просмотр и оценка больше ресурсов и политических типов в одной централизованной, управляемой службы инвентаризации с вновь onboarded политики. Документация
Идентичность Платформа поддержка мульти-аренда: бета
Создание уникальных элеваторов пользователей и конфигураций в рамках одного проекта Идентичность платформы для настройки границ данных изоляции. Бункеры могут представлять различные клиенты, бизнес-подразделения, дочерние компании или другие идентифицирующие признаки. Документация
Менеджер ресурсов — новые ограничения организации политики: GA
Управление и безопасное обслуживание счетов в рамках вашей организации более эффективно с двумя новыми ограничениями политики, которые позволяют ограничить использование учетной записи службы: Создание Отключить Service Account и отключение учетной записи службы создания ключа. Документация
Облако Управление идентификацией и доступом — описание учетной записи службы: GA
Добавить дополнительное описание для учетной записи службы для дальнейшей организации, выявления и дифференциации ваших счетов друг от друга. Документация
Service Cloud Key Management — Cloud Внешний Key Manager: бета
Защитить данные в состоянии покоя в BigQuery и Compute Engine с использованием ключей шифрования, хранящихся и управляемых в системе управления ключами третьих сторон развернуты за пределами инфраструктуры Google. Блог | Документация
Облако идентификация и управление доступом — Cloud IAM Условие: бета
Определение и соблюдение условного, атрибуты на основе контроля доступа к Google Cloud ресурсов. Установка времени на основе условий для запланированного, перерыв стекла, или временного доступа, а также условий на базе ресурсов для доступа с использованием сервиса, тип и имя ресурса соответствия приставки. Документация
Секретный менеджер: бета
Надежно и удобно хранить и извлекать ключи API, жетоны, пароли, сертификаты и другие конфиденциальные данные. Документация
FedRAMP добавляет Высокий и дополнительное Умеренное разрешение на Google Cloud Platform: GA
Запуск совместимых рабочих нагрузок на самом высоком уровне гражданской классификации с FedRAMP высокого разрешения для 17 продуктов Google Cloud в пяти облачных регионах. Кроме того, FedRAMP Умеренная авторизация расширилась до 64 продуктов в 17 облачных регионах. Блог
Облако Asset Inventory — сервис уведомлений в режиме реального времени: GA
Создание подписки для непрерывных обновлений в режиме реального времени об изменениях ресурсов и политики для мониторинга диапазон поддерживаемых типов ресурсов — а также политики Облако управления идентификацией и доступом в организации, папки проекта или конкретного ресурса для Google Cloud Platform и Anthos. Документация
Управление VPC Service — новые интеграции услуг: GA
Исследуйте весь спектр поддерживаемых продуктов и услуг, которые в настоящее время включают в себя облако ТПА, Облако Vision, и облако трассировку. Документация

Читать дальше →

2019 Google Ad Manager Recap

2019 год почти позади. Но прежде чем мы пойдем вперед, нам понадобится немного времени, чтобы оглянуться назад и подумать о другом году, наполненном успехами партнеров, новыми знаниями и, конечно же, выпуском продуктов.

www.blog.google/products/admanager/2019-google-ad-manager-recap/

Объявление о запуске Premium Support для вашего предприятия и критически важных задач

Мы с гордостью сообщаем о запуске службы поддержки Google Cloud Premium, которая включает в себя надежный набор услуг и систем для обслуживания корпоративных и критически важных потребностей клиентов Google Cloud. Мы знаем, что нашим клиентам нужна поддержка Google Cloud, чтобы их можно было легко и просто использовать. Мы используем нашу текущую службу технического менеджера по работе с клиентами (TAM) и 15-минутные SLO, чтобы добавить более проактивный подход и улучшенный общий опыт.

Премиум поддержка была разработана, чтобы лучше удовлетворить потребности наших клиентов, использующих современные облачные технологии. И мы инвестировали средства в улучшение качества обслуживания клиентов благодаря обновленной модели поддержки, которая является упреждающей, унифицированной, ориентированной на клиента и гибкой для удовлетворения различных потребностей их предприятий.

Будучи клиентом Premium Support, ваши дела будут обрабатываться непосредственно экспертами с учетом контекста, которые понимают ваш уникальный стек приложений, архитектуру и детали реализации. Эта команда будет работать рука об руку с вашим Техническим менеджером по работе с клиентами, чтобы обеспечить ориентированную на клиента поддержку с более быстрым разрешением случаев, более персонализированным обслуживанием и более высокой удовлетворенностью клиентов.

Премиум поддержка помогает обеспечить согласованность между планами поддержки для Google Cloud Platform и G Suite; более конкурентоспособный набор функций и услуг; упрощенная цена по сравнению с предыдущими предложениями поддержки Google Cloud; интеллектуальные системы (например, поддержка сторонних технологий, поддержка API и рекомендации); услуги корпоративного класса; и, как уже упоминалось, взаимодействие с клиентами с учетом контекста, чтобы помочь оптимизировать взаимодействие с пользователем в Google Cloud.

Вот обзор преимуществ Премиум поддержки:


Мы знаем, что наши клиенты ведут динамичный бизнес и могут иметь особые проекты и возникающие потребности. Итак, в дополнение к новой Премиум поддержке, мы разработали расширенные сервисы, которые можно приобрести как надстройки при необходимости:
  • Услуга расширенного управления событиями — для более глубокого анализа архитектуры и повышения готовности к пиковым событиям мы предлагаем расширенное управление событиями, которое можно приобрести отдельно.
  • Расширенное покрытие TAM. Для компаний с глобальными операциями, которым требуется руководство TAM в нескольких часовых поясах, вы можете приобрести дополнительную поддержку TAM в рабочее время в других регионах.
  • Поддержка критически важных задач. В рамках пилотного проекта с клиентами, который станет доступен в конце этого года, этот сервис предлагает SRE (проектирование надежности сайта), которое оценивает и помогает заказчику разработать оболочку поддержки для проектов клиентов Google Cloud, которые имеют высочайшую чувствительность к время простоя. Блокировки процесса, которые мы строим с заказчиком, позволяют нам совместно реагировать на крупные инциденты, используя предопределенные военные комнаты.

В настоящее время запущена расширенная поддержка, и мы продолжим развертывать дополнительные функции и планы поддержки до 2020 года. Вы можете быть в курсе нашего нового портфеля обслуживания клиентов в облаке.

IBM Power Systems now available on Google Cloud



У предприятий, стремящихся к облачности, чтобы модернизировать свою существующую инфраструктуру и оптимизировать свои бизнес-процессы, есть много вариантов. На одном конце спектра некоторые организации перепланируют целые унаследованные системы для внедрения облака. Однако многие другие хотят продолжать использовать свою существующую инфраструктуру, в то же время получая выгоду от гибкой модели потребления в облаке, масштабируемости и новых достижений в таких областях, как искусственный интеллект, машинное обучение и аналитика.

Чтобы помочь вам в достижении ваших облачных целей, какими бы они ни были, Google Cloud теперь предлагает IBM Power Systems как часть наших облачных решений. Сегодня клиенты могут запускать IBM Power Systems в качестве службы в Google Cloud, независимо от того, используете ли вы AIX, IBM i или Linux в IBM Power.

Для организаций, использующих гибридную облачную стратегию, особенно важными инструментами являются IBM Power Systems. Из-за их производительности и способности поддерживать критически важные рабочие нагрузки, такие как приложения SAP и базы данных Oracle, корпоративные клиенты постоянно ищут варианты запуска IBM Power Systems в облаке. IBM Power Systems для Google Cloud предлагает способ сделать это, предоставляя лучшее из облачного и локального миров. Вы можете запускать корпоративные рабочие нагрузки, такие как SAP и Oracle, на серверах IBM Power, которым вы доверяете, и в то же время начинаете пользоваться всеми техническими возможностями и благоприятной экономикой, которые предлагает Google Cloud.

IBM Power Systems в Google Cloud также предлагает множество других преимуществ, в том числе:
  • Интегрированный биллинг. Вы можете развернуть решение через Google Cloud Marketplace и воспользоваться преимуществами интегрированного биллинга Google Cloud. Это означает, что вы можете воспользоваться этим предложением, как и любой другой сервис Google Cloud, и получить единый счет от Google Cloud.
  • Доступ к частному API. Технология доступа к частному API Google Cloud позволяет вам получать частный доступ к ресурсам Google Cloud, в то же время позволяя всем ресурсам IBM Power Systems (LPAR) использовать выбранные вами частные IP-пространства. Он безопасен по своей конструкции и обеспечивает сверхнизкую задержку между серверами IBM Power и виртуальными машинами Google Compute Engine.
  • Интегрированная поддержка клиентов: Google Cloud управляет поддержкой клиентов, предоставляя вам единый контакт для решения любых вопросов.
  • Быстрое развертывание: новая интуитивно понятная консоль управления обеспечивает быстрое развертывание и быстрое развертывание решения.

Многие корпоративные клиенты, в том числе лидеры в области энергетики и розничной торговли, уже начали модернизацию своей инфраструктуры с помощью этого нового предложения. Чтобы узнать больше о том, как вы можете использовать IBM Power Systems в Google Cloud, обратитесь к торговому представителю Google Cloud или напишите нам по адресу IBMPowerForGoogleCloud@google.com.

AMD EPYC processors come to Google—and to Google Cloud



Сегодня мы рады сообщить, что мы используем процессоры AMD EPYC для внутренних рабочих нагрузок и скоро они будут доступны клиентам Google Cloud.

AMD и Google имеют долгую историю сотрудничества. Наш «Миллионный сервер», построенный в 2008 году, был основан на чипе AMD, и мы гордимся тем, что первыми стали использовать новейшую платформу AMD в центрах обработки данных, которые используются в наших продуктах.


Для клиентов Google Cloud мы верим в больший выбор и меньшую сложность. Чтобы донести до наших клиентов преимущества нашего сотрудничества с AMD, мы скоро предложим новые виртуальные машины на базе процессоров AMD EPYC второго поколения. Это будут крупнейшие виртуальные машины общего назначения, которые мы когда-либо предлагали.

Больше возможностей процессора дает вам большую гибкость в выборе лучшей виртуальной машины для вашей рабочей нагрузки. Независимо от того, используете ли вы рабочие нагрузки общего назначения, для которых требуется баланс вычислений и памяти, или большие вычислительные нагрузки, обусловленные пропускной способностью памяти, новые виртуальные машины AMD имеют широкий диапазон размеров для удовлетворения ваших потребностей. Процессоры EPYC доступны с базовой частотой 2,25 ГГц, 2,7 ГГц на всех ядрах и турбо-частоте и 3,3 ГГц на одноядерных турбинах. Процессоры EPYC начинаются с 2 vCPU и масштабируются до более 200 vCPU. Они будут поддерживать отношения RAM-vCPU от 1 до 8. Вы также сможете настроить их как пользовательские типы машин, соответствующие вашей конкретной рабочей нагрузке.
cloud.google.com/custom-machine-types/

Мы считаем, что многие рабочие нагрузки общего назначения, включая бэк-офисные приложения и веб-серверы, увидят повышение ценовой производительности на новых виртуальных машинах AMD по сравнению с их текущими конфигурациями. Большие вычислительные рабочие нагрузки, управляемые пропускной способностью памяти, такие как финансовое моделирование, анализ резервуаров и моделирование погоды, могут использовать преимущества размеров виртуальных машин с полным сокетом, которые обеспечивают до 60% более высокую пропускную способность памяти платформы, чем существующие экземпляры. Новые виртуальные машины AMD будут доступны позже в этом году.

Product updates | August 5, 2019



ХРАНЕНИЕ И БАЗ
Cloud Storage — двойственные-региональные места ковшовые: GA

Объединить прирост производительности иметь два конкретные региональные места для хранения данных объекта с преимуществами географической избыточности. Документация

DATA АНАЛИТИКА
BigQuery — постоянные определяемые пользователем функции: бета

Теперь вы можете создавать постоянные определяемые пользователем функции (UDF) в BigQuery, используя выражение SQL или JavaScript. Это позволяет повторно использовать функции по запросам и делиться ими с другими. Вы также можете создать общую библиотеку UDF, что любой, имеющий доступ к набору данных можно вызвать в запросах. Документация

Облако Pub / Sub — аутентифицировано нажатие: GA
В этом выпуске вы можете настроить нажимные подписки предоставить маркер аутентификации, что позволяет конечным точкам, чтобы разрешить запросы. Авторизация с помощью этих маркеров в настоящее время поддерживается Cloud Run изначально. Документация

Услуги трансфера BigQuery данных для Google Merchant Center: бета
Эта услуга позволяет автоматически планировать и управлять повторяющимися ежедневными нагрузками рабочими местами Into BigQuery для Google Merchant Center представления данных. В настоящее время служба BigQuery Передача данных поддерживает каталог продукции и диагностические данные, представленные в торговом центре. Документация

BigQuery ML — предсказание с TensorFlow: бета
Для того, чтобы сделать предсказания из запроса SQL, вы можете импортировать модели TensorFlow в наборе данных BigQuery ML используя свой Google Cloud Platform Console, команду CLI Бк запросов, или API BigQuery. Документация

COMPUTE
Compute Engine — вычислительный оптимизированный экземпляр VM: бета

Теперь вы можете использовать вычислительный оптимизированную ВМ типа экземпляра на Compute Engine. Предназначено для ресурсоемких рабочих нагрузок, эти виртуальные машины предлагают самую высокую производительность на ядро ​​с Intel Scalable процессорами (Cascade Lake) и до 3,8 ГГц понесенных всех ядер турбо. Документация

Compute Engine — атрибуты гостя: GA
Атрибуты гостевых определенный типа пользовательских метаданных, что приложения могут одновременно считывать и записывать во время работы на вашем экземпляре. Они хорошо работают для данных малого объема и для случаев использования, которые требуют небольших объемов данных, которые изменяются нечасто. Документация

App Engine Рубин 2.5 Стандарт среда: бета
Теперь вы можете легко создавать и развертывать приложение, которое может надежно работать при больших нагрузках с большими объемами данных. Приложение может работать в своей собственной безопасной, надежной среде, что это не зависит от аппаратного обеспечения, операционной системы, а также физического расположения сервера. Документация

ИНСТРУМЕНТЫ УПРАВЛЕНИЯ
Облако Firestore — показатели мониторинга Stackdriver для обновления в реальном времени: бета

Этот релиз приносит две новые метрики от Cloud Firestore Into Stackdriver мониторинга, измеряющие ваше использование обновлений в режиме реального времени. Теперь вы можете увидеть количество активных подключений к базе данных и количество снимков слушателей во всех активных соединениях. Документация

Инвестирование в инфраструктуру Google, инвестирование в Неваду

Сегодня мы объявляем о новых инвестициях в инфраструктуру штата Невада: новый центр обработки данных Google и регион Google Cloud. Эти инвестиции расширят наше присутствие на юго-западе США, создадут больше рабочих мест в этом регионе, улучшат возможности подключения и скорость для пользователей служб Google и клиентов Google Cloud, а также обеспечат то, что Невада станет одним из мировых лидеров интернета.

Инфраструктура Google
Инфраструктура является для нас ключевой областью инвестиций, поскольку она лежит в основе всей работы, которую мы выполняем, и поддерживает все наши продукты. Центры обработки данных являются двигателями Интернета, и поскольку спрос на онлайн-контент и облачные сервисы продолжает расти, наши центры обработки данных также растут. Они поддерживают все наши продукты, включая поиск, рекламу, карты, YouTube и Google Cloud. В общей сложности мы вложили 47 млрд. Долл. США в капвложения в период с 2016 по 2018 год, что включает инвестиции в нашу инфраструктуру. Ранее в этом году мы объявили, что будем инвестировать еще 13 миллиардов долларов только в США, включая эти инвестиции в Неваде.

В глобальном масштабе Google управляет дата-центрами в шестнадцати местах, а клиенты Google Cloud обслуживаются в 20 облачных регионах и 61 зоне доступности по всему миру. После завершения работы наш новый сайт в Неваде станет частью всемирной сети центров обработки данных.

Экономический рост и технологии в Серебряном государстве
В районе метро Лас-Вегаса проживает более двух миллионов человек, а индустрия развлечений и игр процветает. Являетесь ли вы пользователем Gmail, глобальным ритейлером или одной из крупнейших в мире развлекательных корпораций, быстрый доступ к онлайн-контенту и облачным сервисам имеет решающее значение для обеспечения бесперебойной работы.

Caesars Entertainment Corporation — один из крупнейших мировых гостиничных операторов, с 40 000 номеров по всему миру. Команда аналитиков данных в Caesars использует бессерверное хранилище данных Google Cloud BigQuery и систему машинного обучения TensorFlow для агрегирования данных и получения из них значимой информации. Благодаря этим ценным сведениям Caesars Entertainment улучшила результаты своих маркетинговых и гостиничных инициатив. «Caesars Entertainment выбрала Google Cloud, потому что мы зависим от высокой надежности, а также от масштабируемости наших инициатив в области анализа данных», — сказал Джин Ли, директор по аналитике SVP в Caesars Entertainment. «Добавление региона Google Cloud в Лас-Вегасе в сочетании со сложными возможностями BigQuery и TensorFlow должно позволить Caesars еще больше разграничить игровой процесс, гостеприимство и развлечения, которые мы можем предложить отдельным гостям».

Новый центр обработки данных Google
Сегодня на нашем революционном мероприятии в Хендерсоне мы ознаменовали начало строительства нового дата-центра Google. В сегодняшнем праздновании приняли участие сенатор Кэтрин Кортез Масто, сенатор Джеки Розен, представитель Сьюзи Ли и губернатор Стив Сисолак, которые рассказали о том, как Google продолжает инвестировать в штат, привнося рабочие места в области технологий, предоставляя местным некоммерческим организациям доступ к более чем 1 доллару США. миллионов в финансировании, и предоставление дополнительной поддержки для малого и крупного бизнеса в государстве. Когда он появится в сети в 2020 году, новый центр обработки данных расширит наши возможности по предоставлению самых быстрых и надежных услуг для всех наших пользователей и клиентов. Мы создаем больше рабочих мест, обслуживаем больше клиентов в этом районе и создаем экономические возможности, поддерживая местные некоммерческие организации.

GCP Nevada
Облако для Невады

Когда он запустится, новый регион Google Cloud в Лас-Вегасе предоставит организациям в западной части США и тем, кто занимается бизнесом в Неваде, более быстрый доступ к продуктам и инструментам Google Cloud Platform, которые помогут повысить эффективность их бизнеса. Регион будет иметь три зоны доступности и будет поддерживать наш портфель ключевых продуктов GCP, предоставляя простую, надежную и безопасную инфраструктуру и молниеносную аналитику данных и ML / AI


И мы не останавливаемся на достигнутом — мы запустим наш облачный регион в Солт-Лейк-Сити в начале 2020 года, в общей сложности на семи облачных регионах Google в континентальной части США. Эти новые регионы позволят клиентам Google Cloud распределять свои рабочие нагрузки по четырем регионам на западе — в Лос-Анджелесе, Орегоне, Солт-Лейк-Сити и Лас-Вегасе — обеспечивая еще большую связь, чем когда-либо прежде. Свяжитесь с отделом продаж, чтобы узнать больше о доступности облачного региона и начать работу с GCP уже сегодня.

Новый дом на юго-западе
Мы считаем, что важно инвестировать в сообщества, которые мы называем домом. Исходя из этого, сегодня мы объявили о Google.org Impact Challenge Nevada, который обещает выделить некоммерческим организациям Silver State на сумму 1 000 000 долларов США со смелыми и инновационными идеями по созданию экономических возможностей в их сообществах. Начиная с сегодняшнего дня, местные некоммерческие организации могут представить свои предложения коллегии местных судей, которая выберет пять победителей, которые получат гранты в размере 175 000 долларов США и пройдут обучение на сайте Google.org, чтобы дать толчок их идеям. Кроме того, у Невадана будет возможность проголосовать за свою любимую идею от пяти победителей, а «Победитель выбора народа» получит дополнительно 125 000 долларов в виде финансирования.

Google с гордостью называет Неваду своим новым домом, и мы будем продолжать инвестировать в сообщества по всему штату. Благодарим вас за то, что вы приняли Google в свои сообщества. Мы с нетерпением ждем возможности построить нашу инфраструктуру в Неваде и вскоре встретить клиентов Google Cloud в нашем регионе Лас-Вегас.

Создание гибридных блокчейн / облачных приложений с Ethereum и Google Cloud



Принятие блокчейн-протоколов и технологий может быть ускорено путем интеграции с современными интернет-ресурсами и публичными облачными сервисами. В этом сообщении мы расскажем о нескольких приложениях, позволяющих сделать данные, размещенные в Интернете, доступными в неизменяемой общедоступной цепочке блоков: размещение данных BigQuery в цепочке с использованием интеллектуального контракта Chainlink oracle. Возможных приложений неисчислимо, но мы сосредоточили этот пост на нескольких из них, которые, по нашему мнению, имеют высокую и непосредственную полезность: рынки прогнозирования, фьючерсные контракты и конфиденциальность транзакций.

Гибридные приложения облачно-блокчейн
Blockchains сосредоточены на математических усилиях для создания общего консенсуса. Вскоре возникли идеи по расширению этой модели, позволяющей заключать соглашения между сторонами, т.е. заключать контракты. Эта концепция умных контрактов была впервые описана в статье 1997 года ученым Ником Сабо. Ранний пример записи соглашений в блоки был популяризирован такими усилиями, как «Цветные монеты» в цепочке блоков биткойнов.
nakamotoinstitute.org/the-idea-of-smart-contracts/
cloud.google.com/public-datasets

Интеллектуальные контракты встроены в источник правды блокчейна и, следовательно, эффективно неизменны после того, как их глубина составляет несколько блоков. Это обеспечивает механизм, позволяющий участникам выделять криптоэкономические ресурсы для соглашения с контрагентом, а также полагать, что условия контракта будут выполняться автоматически и без необходимости исполнения третьей стороной или арбитража, если это необходимо.

Но ничего из этого не решает фундаментальную проблему: где взять переменные, с которыми оценивается контракт. Если данные не получены из недавно добавленных данных в цепочке, требуется надежный источник внешних данных. Такой источник называется оракулом.

В предыдущей работе мы делали общедоступные данные блокчейна в BigQuery через Программу общедоступных наборов данных Google Cloud для восьми различных криптовалют. В этой статье мы будем называть эту работу криптографическими наборами данных Google. Вы можете найти более подробную информацию и образцы этих наборов данных на GCP Marketplace. Этот ресурс набора данных привел к тому, что ряд клиентов GCP разработали бизнес-процессы, основанные на автоматическом анализе индексированных данных блокчейна, таких как распределение прибыли SaaS, смягчение злоупотреблений услугами путем определения характеристик участников сети и использование методов статического анализа для обнаружения уязвимостей программного обеспечения и вредоносных программ. Однако эти приложения имеют общий атрибут: все они используют криптографические общедоступные наборы данных в качестве входных данных для бизнес-процесса вне цепочки.

В отличие от этого, бизнес-процесс, реализованный в виде умного контракта, выполняется внутри цепочки, и он имеет ограниченную полезность, не имея доступа к внеполосным входам. Чтобы замкнуть петлю и разрешить двунаправленное взаимодействие, нам нужно не только сделать данные блокчейна программно доступными для облачных сервисов, но также и облачные сервисы, программно доступные в цепочке для интеллектуальных контрактов.

Ниже мы покажем, как конкретная платформа интеллектуальных контрактов (Ethereum) может взаимодействовать с нашим облачным хранилищем корпоративных данных (BigQuery) через промежуточное программное обеспечение Oracle (Chainlink). Эта сборка компонентов позволяет «умному контракту» предпринимать действия на основе данных, извлеченных из цепного запроса в интернет-хранилище данных. Наши примеры обобщают шаблон гибридных приложений облачной блокчейн, в которых интеллектуальные контракты могут эффективно делегировать облачным ресурсам для выполнения сложных операций. Мы рассмотрим другие примеры этого шаблона в будущих сообщениях в блоге.
ethereum.org/
cloud.google.com/bigquery
chain.link/

Как мы это построили
На высоком уровне Ethereum Dapps (то есть приложения с умным контрактом) запрашивают данные из Chainlink, которая, в свою очередь, получает данные из веб-службы, созданной с помощью Google App Engine и BigQuery.

Чтобы извлечь данные из BigQuery, приложение Dapp вызывает контракт оракула Chainlink и включает в себя оплату за параметризованный запрос, который должен быть обслужен (например, цена на газ в определенный момент времени). Один или несколько узлов Chainlink прослушивают эти вызовы, и после наблюдения один выполняет запрошенное задание. Внешние адаптеры — это сервис-ориентированные модули, которые расширяют возможности узла Chainlink для аутентифицированных API, платежных шлюзов и внешних блокчейнов. В этом случае узел Chainlink взаимодействует со специально созданным веб-сервисом App Engine.
cloud.google.com/appengine/docs/the-appengine-environments

На GCP мы реализовали веб-сервис, используя стандартную среду App Engine. Мы выбрали App Engine за его низкую стоимость, высокую масштабируемость и модель развертывания без сервера. App Engine извлекает данные из BigQuery, в котором размещаются общедоступные наборы данных криптовалюты. Данные, которые мы сделали доступными, получены из постоянных запросов, то есть мы не разрешаем запрашивать произвольные данные из BigQuery, а только из результатов параметризованных запросов. В частности, приложение может запросить среднюю цену на газ либо (A) для конкретного номера блока Ethereum, либо (B) для конкретной календарной даты.

После успешного ответа от веб-службы узел Chainlink вызывает контракт оракула Chainlink с возвращенными данными, который, в свою очередь, вызывает контракт Dapp и, таким образом, запускает выполнение нисходящей специфической для Dapp бизнес-логики. Это изображено на рисунке ниже.


Как использовать оракула BigQuery Chainlink
В этом разделе мы опишем, как можно создавать полезные приложения, используя Google Cloud и Chainlink.

Вариант использования 1: рынки прогнозирования
Участники рынков прогнозирования выделяют капитал, чтобы спекулировать на будущих событиях в целом. Одной из областей, представляющих большой интерес, является то, какая платформа интеллектуальных контрактов будет преобладать, потому что, будучи сетевыми экосистемами, их ценность будет подчиняться степенному закону (то есть победителю — все). Есть много разных мнений о том, какая платформа будет успешной, а также как можно количественно оценить успех.

Используя криптографические общедоступные наборы данных, можно даже успешно прогнозировать сложные цепочки прогнозов, такие как недавняя ставка в 500 000 долларов США на будущее состояние Эфириума. Мы также задокументировали, как можно измерить разнообразие, объем, время и частоту использования Dapp, извлекая 1-, 7- и 30-дневную активность для конкретного Dapp.
www.coindesk.com/maximum-pain-joe-lubin-jimmy-song-strike-500k-crypto-bet-on-ethereums-future
www.investopedia.com/terms/m/monthly-active-user-mau.asp
mixpanel.com/topics/mobile-app-analytics-metrics/

Эти показатели известны как пользователи, работающие ежедневно, еженедельно и ежемесячно, и часто используются специалистами по веб-аналитике и анализу мобильных приложений для оценки веб-сайта и приложения, а также успеха.

Вариант использования 2: хеджирование от риска платформы блокчейна
Движение децентрализованных финансов быстро завоевывает популярность благодаря успешному переосмыслению существующей финансовой системы в условиях блокчейна, которые на технической основе более надежны и прозрачны, чем существующие системы.

Финансовые контракты, такие как фьючерсы и опционы, были изначально разработаны, чтобы позволить предприятиям снизить / застраховать свой риск, связанный с ресурсами, критически важными для их деятельности. Аналогичным образом, данные о деятельности в сети, такие как средние цены на газ, могут использоваться для создания простых финансовых инструментов, которые обеспечивают выплаты их владельцам в случаях, когда цены на газ растут слишком высоко. Другие качества сети блокчейн, например, блокировать время и / или централизацию майнинга, создавать риски, от которых разработчики Dapp хотят защитить себя. Благодаря предоставлению высококачественных данных из криптографических наборов данных в финансовые интеллектуальные контракты, риск для разработчиков Dapp может быть уменьшен. Чистый результат — больше инноваций и ускоренное внедрение блокчейна.

Мы задокументировали, как умный контракт Ethereum может взаимодействовать с оракулом BigQuery для получения данных о цене на газ в определенный момент времени. Мы также реализовали заглушку опции умного контракта, показывающую, как оракул может быть использован для реализации обеспеченного контракта на будущие цены на газ, что является критически важным входом для функционирования Dapp.
docs.chain.link/docs/big-query-chainlink-testnet
github.com/smartcontractkit/bq-example-contract
kb.myetherwallet.com/posts/transactions/what-is-gas/

Вариант использования 3. Включение фиксации / раскрытия в Эфириуме с использованием подводных отправок
Одним из обычно упоминаемых ограничений в самом Ethereum является отсутствие конфиденциальности транзакций, что дает злоумышленникам возможность воспользоваться преимуществами утечки данных по цепочке для использования пользователями часто используемых интеллектуальных контрактов. Это может принимать форму предварительных транзакций, включающих адреса распределенного обмена (DEx). Как описано в статье «Потопить передовиков», «Отправка на подводных лодках», проблема опережающего запуска преследует все текущие DEx и замедляет прогресс движения Децентрализованные финансы, поскольку биржи являются ключевым компонентом многих продуктов / приложений DeFi.
hackingdistributed.com/2017/08/28/submarine-sends/

Используя подход отправки с подводной лодки, пользователи смарт-контрактов могут повысить конфиденциальность своих транзакций, успешно избегая противников, которые хотят их запустить, что делает DEx более полезными. Хотя этот подход уникально полезен для предотвращения злонамеренного поведения, такого как фронтальный запуск, он также имеет свои собственные ограничения, если он выполняется без оракула.

Реализация субмарины посылает без оракула, выдает блокчейн-блат. В частности, виртуальная машина Ethereum позволяет контракту видеть максимум 256 блоков вверх по цепочке или примерно один час. Этот максимальный объем ограничивает практическую полезность отправки подводных лодок, поскольку он создает ненужную денормализацию, когда требуется ретрансляция данных. В отличие от этого, благодаря реализации субмаринных отправлений с оракулом, раздувание исключается, потому что операционная область увеличена, чтобы включить все исторические данные цепочки.

Заключение
Мы продемонстрировали, как использовать сервисы Chainlink для предоставления данных из криптографических общедоступных наборов данных BigQuery в цепочке. Этот метод можно использовать для уменьшения неэффективности (случай использования для отправки с подводной лодки) и в некоторых случаях для добавления совершенно новых возможностей (вариант использования для хеджирования) Интеллектуальные контракты Ethereum, позволяющие появиться новым бизнес-моделям в сети (пример использования рынков прогнозирования).

Суть нашего подхода заключается в обмене небольшого количества времени ожидания и накладных расходов на транзакции на потенциально большую экономическую выгоду. В качестве конкретного примера, обычные отправки подводной лодки требуют хранения в цепочке, которое масштабируется O (n) с блоками, добавленными в цепочку блоков, но может быть уменьшено до O (1), если вызывающий контракт ожидает дополнительных двух блоков для вызова оракула BigQuery.

Мы ожидаем, что этот метод взаимодействия приведет разработчиков к созданию гибридных приложений, которые используют лучшее из того, что могут предложить интеллектуальные контрактные платформы и облачные платформы. Мы особенно заинтересованы в предоставлении сервисов ML облачной платформы Google Google (например, AutoML и Inference API).
cloud.google.com/automl/
cloud.google.com/inference/

Разрешая ссылаться на данные, находящиеся вне цепочки, мы повышаем операционную эффективность платформы интеллектуальных контрактов. В случае отправки с подводной лодки потребление памяти, которое масштабируется O (n) с высотой блока, уменьшается до O (1) за счет компромисса с дополнительной задержкой транзакций для взаимодействия с оракулом.

Product updates | June 10, 2019



Compute Engine — отключение и повторное включение упреждающего перераспределения экземпляра: бета
Проактивное перераспределение экземпляра, который включен по умолчанию для региональных управляемых групп, например, теперь может быть отключено, если вам нужно вручную управлять количеством экземпляров в каждой зоне. Документация | сообщество пост

Compute Engine — региональный обмен настойчивого диска между несколькими экземплярами: бета
Вы можете прикрепить один региональный постоянный диск более одного экземпляра виртуальной машины в режиме только для чтения, что позволяет разделять статические данные между несколькими экземплярами, работающими в разных зонах. Совместное использование статических данных, таким образом, является экономически более эффективным, чем тиражирование его уникальных дисков для отдельных экземпляров. Документация

Kubernetes Engine — удалось поддержку Stackdriver: GA
поддержка Stackdriver теперь автоматически устанавливается или обновляется при выборе версии Kubernetes двигателя и вариант поддержки для кластера. Функции включают поддержку Наследства Stackdriver или мониторинг Stackdriver Kubernetes двигателя. У вас также есть возможность отказаться от этой поддержки. Документация

ХРАНЕНИЕ И БАЗ
журналы заданий Облако Dataproc в Stackdriver: бета

Облако Dataproc хранит журналы драйверов работы в облачном хранилище по умолчанию. В этом выпуске вы также можете включить его, чтобы сохранить их в Stackdriver Logging. Документация

Облако Firestore — сбор группы запросов: GA
По умолчанию запросы получения результатов из одной коллекции в базе данных. В этой версии вы можете вместо этого запускать запросы по коллекции группы, которая состоит из всех коллекций с тем же ID. Документация

IDENTITY & SECURITY
Облако VPN — HA VPN: бета
С высокой доступности (HA) VPN, предприятия могут подключить их на локальной развертывание на GCP Virtual Private Cloud с в отрасли ОАС 99,99% при общей доступности — и они могут иметь более простую установку по сравнению с созданием избыточных VPN. Документация | Блог
Перейдите в консоль

Product updates ALL May



ГИБРИД & MULTI-ОБЛАЧНАЯ
Anthos Управление конфигурацией: GA
Управление конфигурацией и применять политики через ваши кластеры — являются ли они на территории или в облаке. Установите декларативную конфигурацию на основе ролей контроля доступа, квоты ресурсов и пространства имен — все из одного места. Документация | Блог

COMPUTE
Kubernetes двигателя — Intranode Видимость: бета
Эта особенность делает весь ваш сетевой трафик видимой в сеть опорных точек. Вы можете увидеть журналы потока для всего трафика между стручками, включая трафик между стручками на одном узле. И вы можете создать правила брандмауэра, которые применяются ко всему трафику между стручками. Документация
Compute Engine — резервирование зональных ресурсов: бета
Резерв VM экземпляры в определенной зоне, чтобы убедиться, что они доступны для будущего роста спроса, например, плановых или внеплановых шипы, большие миграции, резервного копирования и аварийного восстановления, или запланированного роста. Вы можете создать или отменить заказ в любое время, без каких-либо обязательств. Документация

API ПЛАТФОРМЫ & ECOSYSTEMS
Apigee Portal Разработчик — управление аудиторией и разработчик команды: бета
Эта версия позволяет пользователям портала разделить ответственность за приложение с другими пользователями портала, а также сегмент лиц, для того, чтобы контролировать доступ к контенту. Документация | Блог

AI & МАШИНА ОБУЧЕНИЯ
AI Платформа: Notebooks бета
Это управляемый сервис ноутбука предприятия позволяет получить проекты и работает в течение нескольких минут. В один клик вы можете создать экземпляры в JupyterLab, которые приходят предварительно установлены с последними научными данными и обучения машины рамок. Услуга доступна через платформу AI в Google Cloud Platform Console. Документация
Разработка мобильных APP

IDENTITY & SECURITY
GKE Песочница: бета
Получить дополнительную безопасность для контейнеров Kubernetes двигателя — без дополнительной сложности. Это управляемый сервис, основанный на gVisor проекта с открытым исходным кодом, является решением контейнеров изоляции, что обеспечивает второй уровень защиты между вашей контейнерной нагрузкой на Kubernetes Engine. Страница продукта | Блог

Anthos
Anthos: GA
Эта программная открытая платформа позволяет просто и безопасно запускать ваше приложение — без изменений — локально или в облаке. Гибридная функциональность Anthos доступна на облачной платформе Google с Kubernetes Engine и в вашем центре обработки данных с GKE On-Prem. Скоро: управляйте своими рабочими нагрузками в сторонних облаках по вашему выбору. Документация | Блог
GCP Marketplace — приложения Kubernetes Интеграция Anthos: GA
Благодаря этому запуску большинство приложений Kubernetes, принадлежащих сторонним производителям, и часть приложений сторонних производителей на GCP Marketplace теперь совместимы с кластерами с поддержкой Istio, могут быть развернуты в кластерах GKE On-Prem и GCP и могут экспортироваться. Метрики Прометея. GCP Marketplace

БАЗА ДАННЫХ
Облачный SQL для Microsoft SQL Server: альфа
С помощью этой службы вы можете перенести существующие рабочие нагрузки Microsoft SQL Server в GCP и запустить их в полностью управляемой службе базы данных. Вы можете легко настроить, поддерживать, управлять и администрировать ваши реляционные базы данных PostgreSQL, MySQL и SQL Server в облаке. Страница продукта | Блог
Облачный SQL для PostgreSQL — версия 11: бета
Облачный SQL для PostgreSQL стал одной из самых быстрорастущих баз данных в GCP в прошлом году. Эта последняя версия включает полезные новые функции, такие как улучшения разбиения, хранимые процедуры и больше параллелизма. Документация | Блог

AI & MACHINE ОБУЧЕНИЕ
Облачный ТПУ v3: GA
Облачные TPU от Google — это более быстрый и экономически эффективный способ решения больших задач машинного обучения и новейших моделей распознавания изображений, языковой обработки и многого другого. Теперь доступно последнее поколение Cloud TPU v3. Блог
Таблицы AutoML: бета
Таблицы AutoML позволяют всей вашей команде автоматически создавать и развертывать современные модели машинного обучения на структурированных данных с огромным увеличением скорости и масштаба. Документация | Блог
AutoML Vision Edge: бета
Создание и развертывание быстрых, высокоточных моделей для классификации изображений на периферийных устройствах и запуска действий в реальном времени на основе локальных данных. AutoML Vision Edge поддерживает множество периферийных устройств, где ресурсы ограничены, а низкая задержка имеет решающее значение. Документация | Блог
Обнаружение объектов AutoML Vision: бета
В дополнение к классификации изображений AutoML Vision также может обнаруживать несколько объектов и предоставлять информацию о том, где каждый объект находится в изображении. Документация | Блог
AutoML Natural Language — выборочная сущность и анализ настроений: бета
В этом выпуске добавлена ​​поддержка извлечения пользовательских объектов для автоматической идентификации и маркировки доменных ключевых слов и фраз в документах, а также поддержка пользовательского анализа настроений, настроенного на ваши собственные доменные оценки настроений, чтобы помочь понять общее отношение, выраженное в блоке текста. Документация по извлечению сущностей | Документация Анализ настроений | Блог
Рекомендации AI: ограниченная бета
Рекомендации AI позволяет ритейлерам предоставлять высоко персонализированные рекомендации по продукту в масштабе. Он использует новейшие архитектуры машинного обучения Google для динамической адаптации к поведению клиентов в реальном времени и изменениям таких переменных, как ассортимент, цены и предложения. Рекомендации AI — это полностью управляемый сервис, который может легко интегрировать ваши данные и предоставлять рекомендации любому клиенту.
Страница продукта | Документация | Блог
Поиск продукта Cloud Vision: GA
Cloud Vision Product Search позволяет розничным продавцам встраивать функциональность визуального поиска в свои мобильные приложения, позволяя покупателям делать фотографии или снимки экрана с товарами и получать список аналогичных товаров, предлагаемых продавцом.
Документация | Блог
Cloud Natural Language API: GA
Этот запуск помогает вам идентифицировать обычные объекты чеков и счетов-фактур, такие как даты, адреса и номера телефонов, чтобы сэкономить время на ручных аннотациях и анализе. Он также включает в себя поддержку на японском языке для анализа сущностей и настроений и поддержку на русском языке для анализа сущностей. Документация | Блог
Cloud Translation API v3: бета
Эта последняя версия Cloud Translation API добавляет функцию глоссария, которая позволяет вам определять словарь для конкретной компании, который вы хотите переопределить общие результаты перевода. Он также позволяет выполнять пакетные переводы для поддержки больших объемов контента в одном запросе и дает возможность выбрать лучшую модель, соответствующую вашим потребностям в переводе, включая пользовательские модели. Документация | Блог
Служба маркировки данных платформы AI: бета
Служба маркировки данных позволяет вам пометить данные человеком, подготовив их к высококачественному набору данных для модели машинного обучения. Он поддерживает наиболее популярные варианты использования изображений, видео и текстовых аннотаций, включая классификацию, обнаружение объектов и извлечение объектов. Документация

ИНФРАСТРУКТУРА
Новые регионы GCP — Сеул, Южная Корея и Солт-Лейк-Сити
В начале 2020 года появятся два новых дополнения к глобальной инфраструктуре Google Cloud: Сеул, Южная Корея и Солт-Лейк-Сити. Оба региона будут рассчитаны на высокую доступность с тремя зонами с самого начала и будут включать все ключевые продукты GCP. Блог | Документация

АНАЛИТИКА ДАННЫХ
Облачный поток данных — Streaming Engine: GA
Эта функция позволяет перемещать части конвейерного выполнения с рабочих виртуальных машин в серверную часть облачного потока данных. Это уменьшает потребление ресурсов ЦП и постоянного диска, обеспечивает более быстрое автоматическое масштабирование и улучшает поддержку. Streaming Engine теперь также доступен в двух дополнительных регионах GCP: европа-запад4 (Нидерланды) и азия-северо-восток1 (Токио). Документация
Cloud Composer — обновления среды: бета
Теперь одним щелчком мыши вы можете легко обновить версию Airflow или Cloud Composer, которая работает в вашей среде. Документация
Cloud Composer — частная IP-среда: бета
Теперь, когда вы включаете частный IP, Cloud Composer назначает только частные IP-адреса управляемым виртуальным машинам Kubernetes Engine и Cloud SQL в вашей среде, эффективно предотвращая входящий доступ к этим управляемым виртуальным машинам из общедоступного Интернета. Документация
Cloud Pub / Sub — аутентифицированный push: бета
Теперь Cloud Pub / Sub может безопасно инициировать принудительные конечные точки, используя учетные записи служб и Cloud Identity and Access Management. Push-конечные точки могут проверять подлинность отправителя сообщения и целевого удостоверения, а службы GCP получателя могут использовать Cloud IAM для авторизации push-запросов. Документация
Облачный поток данных — новые регионы: GA
Получите географическую надежность для инфраструктуры обработки данных — теперь с возможностью запуска заданий Cloud Dataflow в азиатско-северо-восточном регионе2 в Осаке, Япония. Cloud Toflow Streaming Engine и Cloud Dataflow Shuffle также доступны в Токио и Нидерландах с добавлением регионов Азия-Северо-Восток1 и Европа-Запад4. Документация
BigQuery — кластеризация: GA
Разделите таблицы BigQuery по столбцам даты и метки времени, и с помощью этой новой возможности повторно кластеризуйте произвольные части таблицы. Первоначально кластеризация будет поддерживаться только на многораздельных таблицах, но будущие выпуски будут поддерживать кластеризацию и на нераздельных таблицах. Документация

СЕТЕВАЯ
VPC Flow Logs — создание настраиваемых логов: бета
Теперь вы можете сбалансировать потребности в отображении трафика и затратах на хранение, предварительно указав интервал, с которым образцы пакетов собираются для данного подключения к виртуальной машине, и объединяются в одну запись журнала. Этот интервал может составлять от пяти секунд до 15 минут. Документация | Блог
Регистрация NAT в облаке: бета
Регистрация NAT в облаке позволяет регистрировать подключения и ошибки NAT. Если ведение журнала включено, все собранные журналы отправляются в Stackdriver по умолчанию. Журналы также содержат пропущенные исходящие пакеты в случае исчерпания порта. Документация

БЕЗОПАСНОСТЬ
Политическая разведка: альфа
Представляем три новых инструмента ML, которые помогут администраторам управлять политиками IAM и снизить риски. Удалите нежелательный доступ к ресурсам GCP с помощью IAM Recommender. Понимать отклоненные запросы и изменять политики доступа с помощью средства устранения неполадок доступа. Используйте Validator для настройки управления и защиты. Блог
Экранированный ВМ: GA
Экранированная виртуальная машина обеспечивает проверяемую целостность ваших экземпляров виртуальной машины Compute Engine, помогая защитить их от вредоносных программ или руткитов уровня загрузки или ядра. Используя функции защищенной виртуальной машины, такие как модуль виртуальной доверенной платформы, безопасная загрузка, измеренная загрузка и мониторинг целостности, вы можете обнаруживать низкоуровневые компромиссы платформ ваших виртуальных машин и снижать риск отфильтрованных данных. Документация | Блог
Предотвращение потери данных в облаке: бета
Новый интерфейс Cloud DLP обеспечивает быструю, масштабируемую классификацию для конфиденциальных данных, таких как номера кредитных карт или номеров социального страхования. Запускайте сканирование всего несколькими щелчками мыши — код не требуется, аппаратное обеспечение или виртуальные машины не требуются.
Страница продукта | Блог
Access Context Manager — новые атрибуты: GA
Уровни доступа определяют различные атрибуты, которые используются для фильтрации запросов к определенным ресурсам. Мы добавили дополнительные атрибуты, которые вы можете использовать, включая геолокацию, одобренные администратором устройства, корпоративные устройства и доступ с проверкой Chrome. Документация
Cloud Security Scanner: бета
Этот сканер веб-безопасности обнаруживает уязвимости, такие как межсайтовый скриптинг, неправильно настроенные заголовки безопасности, пароли в виде открытого текста и устаревшие библиотеки в ваших приложениях GCP. Он обычно доступен для App Engine и теперь доступен в бета-версии для Kubernetes Engine и Compute Engine. Документация | Блог
Идентификационная платформа: GA
Ранее известная как облачная идентификация для клиентов и партнеров, Identity Platform упрощает идентификацию клиентов и управление доступом и помогает вам уверенно масштабировать. Это также упрощает добавление IAM в ваши приложения и защиту учетных записей пользователей. Документация | Блог

COMPUTE
Compute Engine — принесите собственную лицензию: бета
Теперь вы можете принести свою собственную лицензию в Compute Engine, используя единоличные узлы и функцию перезапуска на месте. Узлы единственного арендатора предоставляют выделенное оборудование и позволяют увидеть основные характеристики вашего компьютера, чтобы обеспечить соответствие требованиям лицензии и требования к отчетности. Документация | Блог
Графические процессоры NVIDIA T4 на GCP: GA
Графические процессоры NVIDIA T4, которые в настоящее время доступны в восьми регионах мира, ускоряют различные облачные нагрузки, включая высокопроизводительные вычисления, обучение машинному обучению и выводу, анализ данных и графику. Страница продукта | Блог
Cloud Run: бета
Получите простой опыт развертывания и запуска служб без сохранения состояния в вашем кластере, включая автоматическое масштабирование на основе HTTP-запросов, масштабирование до нуля, автоматическое сетевое взаимодействие и интеграцию со Stackdriver. Запускайте свои безсерверные рабочие нагрузки в любом месте с помощью Google Cloud или Kubernetes Engine. Документация | Блог

МЕСТО ХРАНЕНИЯ
Облачное хранилище файлов: GA
Создайте полностью управляемые файловые серверы NFS на GCP для использования с приложениями, работающими на виртуальных машинах Compute Engine или кластерах Kubernetes Engine. Облачное хранилище файлов теперь предлагает SLA, а экземпляры премиум-класса теперь обеспечивают повышенную производительность чтения — до 1,2 ГБ / с и 60 000 операций ввода-вывода в секунду. Документация | Блог
Только политика хранилища облачных хранилищ: бета
Только Bucket Policy обеспечивает единообразное и непротиворечивое разрешение для всех объектов в пределах корзины путем настройки конфигурации IAM на уровне сегмента. Это упрощает разрешение, так как отдельные списки контроля доступа на уровне объектов отключены, и только разрешения IAM уровня сегмента разрешают доступ к блоку и его объектам. Документация | Блог

УПРАВЛЕНИЕ API
API Cloud Healthcare: бета
Теперь в GCP есть управляемое решение для хранения, обработки и де-идентификации медицинских данных, связывающее существующие системы ухода и приложения, размещенные в Google Cloud. API помогает организациям здравоохранения управлять отраслевыми данными, такими как EHR и визуализация, и лучше понимать данные с помощью аналитики и ML в реальном времени в масштабе. Документация | Блог
Гибрид апигея: бета
Этот новый вариант развертывания позволяет разместить среду выполнения в своем центре обработки данных или в общедоступном облаке по вашему выбору. Получите единственное, полнофункциональное решение для управления API во всех ваших средах с глобальным масштабом, гибкостью и согласованностью. Документация | Блог

ИНСТРУМЕНТЫ РАЗРАБОТЧИКА
Облачные задачи: GA
Этот полностью управляемый сервис позволяет вам управлять выполнением, распределением и доставкой распределенных задач. Облачные задачи обеспечивают надежную разгрузку задач, слабую связь между службами и повышенную надежность системы с настройкой скорости и пределами повторных попыток. Используйте облачные задачи для асинхронного выполнения работы, чтобы уменьшить задержку запросов, развязать и масштабировать микросервисы, управлять потреблением ресурсов и обрабатывать инциденты, не отбрасывая запросы. Страница продукта
Облачный планировщик: GA
Cloud Scheduler — это полностью управляемый планировщик заданий корпоративного уровня. Это позволяет планировать практически любую работу, включая пакетную обработку, работу с большими данными, операции с облачной инфраструктурой и многое другое. Вы можете автоматизировать все, включая повторные попытки в случае сбоя, чтобы уменьшить ручной труд и вмешательство. Cloud Scheduler даже действует как единое стекло, позволяя вам управлять всеми задачами автоматизации из одного места. Документация

ПОДДЕРЖКА GOOGLE CLOUD PLATFORM
Поддержка GCP для Firebase: GA
Этот запуск включает в себя обновленное руководство Службы технической поддержки GCP (TSS). Все службы Firebase теперь имеют право на TSS, за исключением приглашений Firebase, индексации приложений Firebase, динамических ссылок Firebase, Google Analytics для Firebase и базы данных реального времени Firebase. Документация

Anthos
Приложения Kubernetes в Google Cloud Platform Marketplace: GA
Приложения Kubernetes — это готовые к работе контейнерные решения с готовыми шаблонами развертывания. Этот последний запуск выпускает 48 бета-тестовых коммерческих приложений Kubernetes в GCP Marketplace от бета-версии до GA. Сайт | Документация

БАЗА ДАННЫХ
Cloud Bigtable — мультирегиональная репликация: GA
Теперь вы можете настроить асинхронную репликацию между четырьмя кластерами в одном экземпляре, расположенном в любом подмножестве зон по всему миру. Это устраняет ограничение в одном и том же регионе для выбора местоположения кластера, предоставляя вам возможность сделать ваши данные доступными по всему региону или по всему миру. Документация | Блог

AI & MACHINE ОБУЧЕНИЕ
Документ Понимание AI: бета
Эта масштабируемая безсерверная платформа позволяет автоматически классифицировать, извлекать и обогащать данные в отсканированных или цифровых документах. Он превращает ваши документы в структурированные данные, помогая автоматизировать рабочие процессы обработки документов и разблокировать скрытые знания в вашей организации. Страница продукта | Блог
Контакт-центр AI: бета
Мы объединили лучшее из Google AI с популярным программным обеспечением контакт-центра, чтобы улучшить ваш опыт и повысить эффективность работы. Мы сотрудничаем с ведущими поставщиками услуг телефонии и системными интеграторами, поэтому вы можете легко включить Contact Center AI с вашими существующими решениями. Страница продукта | Блог
AI Hub: бета
AI Hub дополняет новую платформу AI, предлагая вам управляемые API машинного обучения, модули TensorFlow, ноутбуки, сквозные конвейеры ML и многое другое. Делитесь активами ML внутри своей организации, чтобы масштабировать влияние ресурсов ML и способствовать их повторному использованию и совместной работе.
Документация | Блог | Решение
Панель инструментов AI Platform: бета
Этот выпуск предлагает унифицированную целевую страницу для всех продуктов AI Platform, предоставляя управляемый сервис для ноутбуков и инструменты для маркировки данных. Он также помогает запускать Kubeflow Pipelines в GCP и перемещать локальный код приложения в GCP с минимальными изменениями. Страница продукта | Блог
AutoML Video Intelligence: бета
Создайте пользовательские модели, которые автоматически классифицируют видеоконтент с определенными вами метками. Теперь вы можете загружать свои собственные видеозаписи и пользовательские теги, чтобы обучать модели, которые соответствуют вашим потребностям бизнеса, например, для тегов и извлечения видео с пользовательскими атрибутами. Документация | Блог

АНАЛИТИКА ДАННЫХ
Облачный поток данных — гибкое планирование ресурсов: бета
FlexRS снижает затраты на пакетную обработку, используя передовые методы планирования, службу Cloud Dataflow Shuffle и комбинацию вытесняемых и обычных экземпляров виртуальных машин. Документация | Блог
Облачный поток данных Shuffle — новые регионы: GA
Эта функция, доступная только для пакетных конвейеров, позволяет экономить ресурсы, перемещая операцию перемешивания из экземпляров рабочих виртуальных машин в серверную часть облачного потока данных. В настоящее время он обычно доступен в регионах Азия-Северо-Восток1 (Токио) и Европа-Запад4 (Нидерланды). Документация
BigQuery Географические информационные системы: GA
BigQuery GIS позволяет анализировать и визуализировать геопространственные данные в BigQuery, используя типы данных географии и стандартные функции географии SQL. Документация | Блог
BigQuery BI Engine: бета
С помощью этой полностью управляемой службы анализа в памяти вы можете в интерактивном режиме анализировать сложные наборы данных с помощью времени отклика до доли секунды и высокой степени параллелизма через Google Data Studio. В ближайшие месяцы BigQuery BI Engine будет интегрирован с подключенными электронными таблицами в Sheets и с инструментами бизнес-аналитики партнеров. Документация | Блог
Cloud Data Fusion: бета
Этот полностью управляемый сервис интеграции данных для предприятий позволяет легко создавать надежные, масштабируемые решения для интеграции данных для очистки, подготовки, смешивания, передачи и преобразования данных из разнородных источников — без необходимости бороться с инфраструктурой. Документация | Блог
BigQuery фиксированная цена: GA
Теперь мы предлагаем модель ценообразования с фиксированной ставкой для клиентов, которые предпочитают платить фиксированные ежемесячные расходы за запросы, а не переменную цену по запросу. Зарегистрируйтесь и приобретите специальные возможности обработки запросов, измеренные в слотах BigQuery. Минимальный размер теперь составляет 500 слотов по 10000 долларов в месяц. Документация

СЕТЕВАЯ
Cloud Interconnect 100G: бета
Cloud Interconnect обеспечивает высокодоступные соединения с низкой задержкой, которые позволяют надежно передавать данные между локальной сетью и сетями VPC. С этим запуском вы можете теперь запрашивать 100G соединений, в дополнение к 10G. Документация | Блог
Директор по трафику: бета
Эта полностью управляемая плоскость управления трафиком для открытой сервисной сетки позволяет легко развертывать глобальную балансировку нагрузки между кластерами и экземплярами виртуальных машин в нескольких регионах, выполнять проверку работоспособности от прокси служб и настраивать сложные политики управления трафиком. Документация | Блог
Балансировка нагрузки в облаке — новые функции внутренней балансировки нагрузки TCP / UDP L4: бета
Новые функции включают в себя обнаружение служб на основе DNS (бета), все порты L4 ILB (GA) и группы аварийного переключения L4 ILB (бета). Блог | Документация

МИГРАЦИЯ
Служба передачи данных BigQuery: бета и альфа
Упростите миграцию в Google Cloud и значительно сократите время миграции с помощью BigQuery Data Transfer Service, который автоматизирует миграцию данных и схем в BigQuery из Teradata, а также загрузку данных из Amazon S3, которые сейчас находятся в стадии бета-тестирования. Автоматизированная миграция данных из Amazon Redshift теперь в альфа-версии. Страница продукта

БЕЗОПАСНОСТЬ
Облачный Identity-Aware Proxy — контекстно-зависимый доступ: GA
Получите помощь в защите экземпляров виртуальных машин — и теперь как облачных, так и локальных веб-приложений — с контекстно-зависимым доступом, который позволяет принудительно применять доступ к приложениям и инфраструктуре на основе личности пользователя и контекста их запроса. Принять модель управления доступом на уровне приложения вместо того, чтобы полагаться на VPN на уровне сети. Документация | Блог
Разрешение на доступ: бета
Утвердите или отклоните запросы на доступ от сотрудников Google, работающих для поддержки вашего сервиса. Access Approval отправит вам электронное письмо или сообщение Cloud Pub / Sub с запросом на доступ, который затем можно будет одобрить с помощью консоли GCP или API Access Access. Документация | Блог
Командный центр облачной безопасности: GA
Получите доступ к этой платформе управления безопасностью и рисками для GCP, чтобы лучше понять вашу безопасность и поверхность атаки данных Обладая такими возможностями, как Security Health Analytics и Cloud Security Scanner, Cloud SCC помогает группам безопасности предотвращать, обнаруживать и реагировать на угрозы с единой стеклянной панели. Документация | Блог
Cloud SCC — обнаружение угрозы события: бета
Это новое средство безопасности сканирует журналы Stackdriver для обнаружения подозрительных действий, таких как вредоносные программы, крипто-майнинг и исходящие DDoS-атаки. Он помечает результаты для исправления и выявляет угрозы в Cloud SCC. Блог
Android-телефон — встроенные ключи безопасности: бета
Одна из самых надежных средств защиты от фишинга — технология FIDO Security Key — теперь доступна в телефонах Android без дополнительной оплаты. Вам больше не нужно покупать фактический ключ, это означает, что эта технология безопасности теперь доступна любому, у кого есть телефон с Android. Блог

COMPUTE
Compute Engine — регистрация выходов последовательного порта в Stackdriver: GA
Теперь вы можете настроить экземпляры виртуальной машины Compute Engine для автоматической отправки выходных данных последовательного порта в ведение журнала Stackdriver. Для экземпляров виртуальной машины, которые больше не работают, вы все равно сможете найти и просмотреть выходные данные последовательного порта, сохраненные в журнале Stackdriver. Документация
Kubernetes Engine — управляемые сертификаты: бета
Управляемые сертификаты SSL упрощают процесс включения HTTPS-соединения. Они обновляются автоматически и отменяются при удалении прокси. Обладая управляемыми сертификатами, Cloud Load Balancing по умолчанию шифрует пользовательские соединения, исключая ручную работу. Документация
Облачные функции — максимум экземпляров: бета
В этом выпуске вы можете ограничить степень масштабирования вашей функции в ответ на входящие запросы. Вы можете установить максимальное количество экземпляров для отдельной функции во время развертывания, и каждая функция может иметь свой собственный предел максимального количества экземпляров. Документация
Compute Engine — виртуальные машины с оптимизированными вычислениями (C2): alpha
В этом выпуске представлено новое семейство экземпляров виртуальных машин, которые оптимизированы для согласованных высокопроизводительных рабочих нагрузок и обеспечивают повышение производительности более чем на 40% по сравнению с текущими виртуальными машинами GCP. Используя масштабируемые процессоры Intel Xeon второго поколения, виртуальные машины C2 могут работать на постоянной тактовой частоте 3,8 ГГц. Блог
Compute Engine — виртуальные машины с оптимизированной памятью (M2): альфа
Виртуальные машины M2 предлагают самую высокую конфигурацию памяти для виртуальной машины Compute Engine. Они идеально подходят для нагрузок с интенсивным использованием памяти, таких как большие базы данных в памяти и аналитические данные в памяти. Наши новейшие дополнения предлагают до 12 ТБ памяти и 416 виртуальных ЦП. Блог
Cloud Run: бета
Cloud Run переносит серверы в контейнеры, абстрагируя все управление инфраструктурой, так что вы можете сосредоточиться на создании приложений. Теперь вы можете запускать HTTP-контейнеры без сохранения состояния в полностью управляемой среде или в вашем кластере Kubernetes Engine. Страница продукта | Блог
Compute Engine — явная локализация для снимков: GA
Теперь клиенты могут контролировать локальность данных при создании снимков зональных или региональных постоянных дисков. Для хранения снимков клиенты могут выбрать мультирегиональное хранилище облачного хранилища (доступно в США, Европе и Азии) или определенный регион облачного хранилища. Документация

УПРАВЛЕНИЕ API
Установщик Apigee Edge для Pivotal Cloud Foundry: GA
Этот последний выпуск BOSH упрощает установку, управление и обслуживание Apigee Edge для частного облака 4.19.01. Одной из ключевых новых функций является новый интерфейс Apigee Edge и поддержка спецификации OpenAPI v3. Документация

ИНСТРУМЕНТЫ УПРАВЛЕНИЯ
Stackdriver Profiler: GA
Этот статистический профилировщик с минимальными накладными расходами позволяет непрерывно собирать информацию об использовании ЦП и распределении памяти из ваших производственных приложений. Вы можете определить характеристики производительности кода, например, какие части потребляют больше всего ресурсов. Документация

ИНСТРУМЕНТЫ РАЗРАБОТЧИКА
Облачный код
Этот новый набор плагинов для IntelliJ и Visual Studio Code помогает ускорить
Страница услуги. Блог