Новый мощный выделенный сервер в Дюссельдорфе, Германия



Мы рады предложить Вам новый мощный выделенный сервер в Дюссельдорфе, Германия:

Intel Xeon E-2136 с 6 ядрами (12 нитей) и 32 ГБ DDR4 ECC и 2 х 2 ТБ HDD (или 2 х 240 Гб SSD) — 78 EUR только

Вы можете настроить этот сервер с максимумом 4 дисков: 240 Гб SSD, 480 Гб SSD, 960 Гб SSD и 450 Гб SSD NVMe

https://eurohoster.org

Облачные вычисления на GPU NVIDIA от REG.RU: новые тарифы и переход в открытое бета-тестирование



Крупнейший российский хостинг-провайдер и регистратор доменов REG.RU в формате открытого бета-тестирования запускает новые тарифы для услуги «Облачные вычисления на GPU». Инфраструктурный партнёр продукта — производитель графических ускорителей NVIDIA.

Облачные вычисления на GPU — программно-аппаратная платформа на базе мощных графических ускорителей NVIDIA Tesla V100, разработанных специально для машинного обучения, анализа больших массивов данных и высоконагруженных вычислений. В течение последнего года REG.RU тестировал услугу, изучал пользовательский опыт и спрос, идентифицировал потребности клиентов и в результате запускает бета-тест новых тарифов для облачных вычислений.

Ключевые критерии выбора тарифа — объём данных клиента и необходимая мощность GPU. Чем больше память GPU, тем больший объём она способна переработать. GPU-7 и GPU-8 позволяют использовать сразу несколько графических ускорителей для максимально быстрых расчётов. В зависимости от задачи, каждый сможет найти подходящее решение: владельцы стартапов и предприниматели, программисты и разработчики, студенты, научные сотрудники и многие другие.

Через панель управления услугой клиент может самостоятельно разворачивать и удалять серверы, выбирать преднастроенные шаблоны виртуального окружения с Ubuntu или Windows и производить базовые действия с услугой. Благодаря режиму почасовой оплаты можно включать вычисления только на тот период, на который требуется графический ускоритель (GPU). На время бета-тестирования, до 1 июня 2019 года, стоимость составит от 90 рублей за час работы.

Подробнее о тарифных планах можно узнать на странице услуги: www.reg.ru/cloud-services/cloud_gpu Если ни один из них по каким-то причинам не подходит, можно оставить заявку в специальной форме и менеджеры создадут индивидуальную конфигурацию и тариф.

Выбирая облачные вычисления на GPU от REG.RU, пользователи получают доступ к NVIDIA GPU Cloud — каталогу программных инструментов для искусственного интеллекта, машинного обучения, НРС и используют мощность GPU NVIDIA на локальных и облачных системах. Предварительно интегрированные контейнеры включают в себя рекордный программный стек NVIDIA AI, в том числе NVIDIA CUDA Toolkit, библиотеки глубокого обучения NVIDIA и ведущие интеллектуальные программные инструменты.

Облачные вычисления на GPU — это во многом эксперимент, который показал отличные результаты! В течение года мы тестировали продукт, предоставляли его участникам хакатонов, изучали спрос и отклики. Разработка понятной и устойчивой тарифной сетки и выход в открытое бета-тестирование — это ещё один шаг в развитии нашей услуги
комментирует генеральный директор REG.RU Алексей Королюк.

Мощные вычислительные платформы сегодня востребованы не только в сфере исследований, но и в бизнесе. Доступ к вычислениям в облаке и наличие необходимых программных инструментов обеспечивают компании разного масштаба всеми необходимыми ресурсами для реализации самых смелых идей
отмечает Дмитрий Конягин, руководитель направления Enterprise-решений в NVIDIA Россия



www.reg.ru/cloud-services/cloud_gpu

Создание лучшего облака вместе: новости от наших партнеров на Next №19



Наши клиенты полагаются на партнеров, которые помогут им в их облачном путешествии, независимо от того, хотят ли они модернизировать свою инфраструктуру, найти содержательную информацию из своих данных или воспользоваться отраслевым опытом. Наша экосистема Google Cloud — включая партнеров-посредников, партнеров по обслуживанию, партнеров по технологиям и новаторов с открытым исходным кодом — играет эту роль, и за прошедший год мы сделали значительные инвестиции в то, как мы поддерживаем эту экосистему.

На этой неделе мы ожидаем появления Next'19, и мы рады объявить о новых обновлениях и инвестициях, чтобы сохранить этот импульс в следующем году и в последующие годы. Они включают:
  • Широкая поддержка наших партнеров для Anthos.
  • Приверженность надежному сообществу партнеров с открытым исходным кодом.
  • Расширения вычислительных и безсерверных партнерств.
  • Новые специализации для наших реселлеров и партнеров по обслуживанию.
  • Новые партнерские интеграции направлены на улучшение совместной работы для конечных пользователей.
  • Обновления нашего подхода к MSP.
  • И, конечно же, наши победители конкурса партнеров в 2018 году.

Вот сводка некоторых из наших интересных партнерских новостей:
Превращение мультиоблака в реальность с Anthos и широкой поддержкой нашей экосистемы
Anthos, новая гибридная платформа Google Cloud, позволяет компаниям писать свои приложения один раз и запускать их где угодно — в своих собственных центрах обработки данных, Google Cloud или другом облаке.

Для компаний, которые хотят использовать существующие инвестиции в свои собственные центры обработки данных, мы сотрудничаем с Cisco, Dell EMC, HPE, Intel, Lenovo и VMware, каждая из которых взяла на себя обязательство проверять Anthos в своем стеке решений и предоставлять эталонные архитектуры, предоставляя нашим взаимные клиенты выбирают аппаратное обеспечение в зависимости от потребностей в хранении, памяти и производительности.

Мы также знаем, что предприятиям иногда требуется помощь в модернизации и расширении приложений с использованием Anthos. Мы привлекли ведущих системных интеграторов, которые готовы работать с вами для внедрения Anthos в вашу среду, включая:


Но мы не остановились на этом. Мы хотим предоставить клиентам доступ к полностью облачной экосистеме открытых решений, от управляемых баз данных и безопасности до аналитики и инструментов DevOps. Через Anthos клиенты могут беспрепятственно развертывать эти решения между GKE и GKE On-Prem — во многих случаях одним щелчком мыши, как приложения Kubernetes, через GCP Marketplace, который включает в себя интегрированный учет и выставление счетов. Они включают:


Стремление к надежным инновациям и партнерским отношениям с открытым исходным кодом
С момента основания Google, открытый исходный код был в основе того, что мы делаем, и вы можете увидеть это в наших вкладах в такие проекты, как Kubernetes, TensorFlow, Go, Android и многие другие. Мы всегда видели наших друзей в сообществе открытого исходного кода как равных соавторов, а не просто как ресурс, который нужно добывать.

Сегодня мы расширяем нашу давнюю приверженность и участие в сообществе открытого исходного кода с целым рядом стратегических партнерских отношений. Мы будем предлагать управляемые услуги, управляемые компаниями с открытым исходным кодом CloudBees, Confluent, MongoDB, Elastic.co, Neo4j, Redis Labs, InfluxData и Datastax, которые тесно интегрированы в Google Cloud Platform (GCP), обеспечивая бесперебойную работу пользователей по всему управление, биллинг и поддержка. Это облегчает нашим корпоративным заказчикам использование технологий с открытым исходным кодом, а также обеспечивает нашу приверженность постоянной поддержке и расширению этих сообществ с открытым исходным кодом.

Предлагая расширенный опыт, аналогичный нативным службам Google, мы работаем вместе с этими создателями и поддерживаем развитие технологий этих компаний, чтобы стимулировать их принятие. Вы можете узнать больше в нашем блоге с открытым исходным кодом.

Новые безсерверные и вычислительные партнерства
На прошлой неделе мы объявили о расширении наших предложений виртуальных машин Compute Engine, чтобы включить новые виртуальные машины с оптимизированной вычислительной мощностью и виртуальные машины с оптимизированной памятью. Оба базируются на масштабируемых процессорах Intel Xeon 2-го поколения, которые мы поставили заказчикам в октябре прошлого года — первому облачному провайдеру, сделавшему это. Кроме того, эти процессоры также появятся на наших виртуальных машинах общего назначения. Это означает, что у вас будет доступ к полному набору типов машин для успешной работы ваших нагрузок в широком диапазоне требований к памяти и вычислениям.

Google Cloud также стал первым облачным провайдером, предложившим доступность графического процессора NVIDIA Tesla T4 еще в ноябре 2018 года. Графические процессоры T4 оптимизированы для вывода на машинное обучение (ML), распределенного обучения моделей и компьютерной графики.

Мы также расширяем нашу экосистему партнерских отношений без серверов. Бессерверные вычисления помогают разработчикам сосредоточиться на написании кода, обеспечивающего ценность для бизнеса, а не беспокоиться о сложной базовой инфраструктуре. Наш уникальный подход к безсерверным решениям позволяет вам легко использовать полный набор дополнительных услуг и целую экосистему тесных партнерских отношений с лидерами отрасли, такими как Datadog, NodeSource, GitLab и StackBlitz, которые обеспечивают поддержку интеграции для Cloud Run через мониторинг приложений., кодирование и этапы развертывания. Чтобы узнать больше о наших новых серверных предложениях, ознакомьтесь с разделом «Объявление о запуске в облаке, новейшем участнике нашего безсерверного вычислительного стека».

Расширенные способы сотрудничества
Совместное использование и хранение веб-файлов быстро стало неотъемлемой частью повседневной работы, но сопоставление этих файлов между несколькими инструментами может быть затруднено. Мы хотим, чтобы вы могли легко сотрудничать, независимо от файла, приложения. Сегодня мы объявили о новой интеграции с G Suite и Dropbox, чтобы упростить эту задачу.

Теперь клиенты Dropbox Business могут создавать, сохранять и обмениваться файлами G Suite, такими как Google Docs, Sheets и Slides, прямо из Dropbox. Благодаря этой интеграции файлы G Suite будут отображаться при поиске в Dropbox. Вы также можете открывать файлы различных форматов, таких как .docx, .xlsx или .pptx, из Dropbox в G Suite, а затем сохранять их обратно в Dropbox в любом формате, который вы предпочитаете. (Хотя мы занимаемся вопросами форматов файлов, мы также упростили совместную работу с файлами Microsoft Office в режиме реального времени. Подробнее об этом в этом посте).

Расширение наших партнерских специализаций
Многие клиенты нуждаются в партнерах с опытом работы в определенной области, чтобы помочь им найти передовые решения для своих задач, а также запускать и обслуживать их в течение долгого времени.

Чтобы помочь клиентам определить правильного партнера, мы предоставляем партнерские специализации. Мы предлагаем 10 различных областей специализации партнеров, значительный диапазон которых позволяет клиентам искать правильное сочетание соответствующей глубины для удовлетворения их конкретных потребностей и требований. Партнеры, получившие специализацию, имеют в своем составе несколько человек, имеющих высочайший уровень сертификации, продемонстрировавших и задокументированных историй успеха клиентов, и прошедших строгую оценку способностей от экспертов из нашей команды профессиональных услуг.

Сегодня мы объявляем, что 21 из наших партнеров получили специализацию в трех дополнительных областях. Они включают:

Партнеры по специализации Marketing Analytics обладают уникальными навыками сбора, преобразования, анализа и визуализации данных, а затем используют полученные знания для оптимизации маркетинговой стратегии и активаций.
  • 55 SAS
  • Accenture
  • BrainPad
  • Datatonic
  • Deloitte
  • Maven Wave Partners
  • Merkle
  • NRI
  • Quantiphi, Inc
  • Publicis.Sapient
  • Servian
  • Wunderman Thompson

Партнеры по специализации IoT, которые помогают предприятиям более легко и безопасно подключаться, управлять и получать данные IoT с глобально распределенных устройств, чтобы анализировать их и получать новые знания. Партнерами, объявленными сегодня, являются:
  • Agosto, Inc
  • Atos IT
  • Hitachi Consulting
  • Leverege, LLC
  • Object Computing Inc
.
Softserve Inc.

Партнеры по специализации обучения безопасности, которые последовательно проводят успешное обучение в соответствии со стандартами учебной программы Google Cloud, а также как минимум два авторизованных инструктора, посвященных системе безопасности GCP. Они включают:
  • ROI Training
  • QA Limited
  • Jellyfish Group Limited
Вы можете узнать больше о нашей программе специализации для партнеров здесь.
cloud.google.com/partners/specializations/

Импульс и обновления с нашими MSP
Наша экосистема ССП является ключевой частью нашего подхода к выходу на рынок. Сегодня они помогают многим клиентам создавать, масштабировать, управлять и поддерживать модернизированные ИТ-стратегии с помощью Google Cloud.

Квалифицированные Google Cloud MSP прошли тренинги и обширные проверки, чтобы убедиться, что они могут управлять, отслеживать, исправлять и оптимизировать рабочие нагрузки на GCP. Мы предоставляем этим партнерам многочисленные ресурсы, чтобы помочь им обслуживать клиентов, в том числе поддержку со стороны специальных менеджеров по работе с клиентами MSP, разработку клиентов, а также интерактивные и личные ресурсы сообщества.

Реакция сообщества MSP и клиентов была сильной. За последний год у нас есть квалифицированные партнеры, в том числе:
  • Accenture
  • Bespin Global
  • Claranet Limited
  • Cloudreach Inc.
  • Doit SaaS Ltd.
  • Go Reply S.R.L.
  • Infosys Limited
  • Nordcloud Oy
  • oXya Corporation
  • Rackspace
  • Sopra Steria
  • Taos Mountain, LLC

На следующем этапе мы представим значок MSP Initiative для квалифицированных партнеров, чтобы нашим совместным клиентам было проще находить партнеров, которые могут помочь им ускорить путешествие в Google Cloud.

Чтобы узнать больше о нашей инициативе MSP, пожалуйста, посетите здесь.
cloud.google.com/partners/msp-initiative

Объявление победителей нашей партнерской премии 2018 года
Каждый год мы с нетерпением ждем возможности узнать наших замечательных партнеров, помогающих нашим клиентам на каждом этапе их перехода в облако. Пожалуйста, присоединяйтесь к нам, чтобы поздравить наших победителей 2018 года.



cloud.google.com/partners/
cloud.google.com/blog/topics/partners/building-a-better-cloud-together-news-from-our-partners-at-next19

Акция на дедики!

У нас есть не только быстрые VDS, но и мощные выделенные серверы, которые подойдут для реализации ваших самых смелых идей и проектов. Данная опция стала ещё доступнее, при заказе выделенного сервера на базе Intel Xeon E5620, вы получите не только мощную машину, но и дополнительную выгоду за счёт снижения стандартной цены на ряд некоторых характеристик.



Подобрать конфигурацию и заказать сервер можно
www.ihor.ru/dedic

Google Cloud анонсирует новые регионы в Сеуле и Солт-Лейк-Сити

За три года Google Cloud открыл 15 новых регионов и 45 зон в 13 странах. Мы продолжаем расширять свое глобальное присутствие, чтобы поддерживать наших растущих клиентов по всему миру. Сегодня мы анонсируем два новых дополнения к нашей глобальной инфраструктуре: новые регионы Google Cloud в Сеуле, Южная Корея и Солт-Лейк-Сити, штат Юта, США, — общее количество глобальных регионов в 2020 году составит 23.


Новые регионы GCP Сеул и SLC
Клиенты могут рассчитывать на использование региона Сеул в начале 2020 года, а вскоре после этого — региона Солт-Лейк-Сити. Каждый новый облачный регион с самого начала рассчитан на высокую доступность с тремя зонами и будет включать наш портфель ключевых продуктов Google Cloud Platform (GCP).

Google Cloud регион прибывает в Южную Корею
Южная Корея является лидером в области телекоммуникаций и информационных технологий и всемирно известна в игровой индустрии. В Южной Корее мы наблюдаем огромное признание клиентов со стороны глобальных компаний, таких как Samsung, Netmarble, TMON и LG CNS. Например, Netmarble, крупнейшая южнокорейская игровая компания, использует Google Cloud для поддержки разработки новых игр, управления инфраструктурой и внедрения бизнес-аналитики во все операции с использованием GKE, BigQuery и Cloud ML Engine. LG CNS использует Google Cloud, чтобы ежегодно экономить миллионы долларов, используя AI для визуального осмотра своих производственных линий с целью повышения качества продукции.

Сеул станет восьмым регионом Google Cloud в Азиатско-Тихоокеанском регионе и поможет лучше обслуживать как местных клиентов, стремящихся расширяться, так и транснациональных клиентов, ведущих бизнес в Южной Корее.

Расширение нашего присутствия в США благодаря облачному региону Солт-Лейк-Сити
Добавление Солт-Лейк-Сити увеличит общее число регионов Google Cloud в континентальной части США до шести, и это подчеркивает наш огромный рост в США. Солт-Лейк-Сити, известный своими сферами здравоохранения, финансовых услуг и ИТ, является центром инфраструктуры центров обработки данных., Этот новый регион позволит клиентам в области Silicon Slopes легко выполнять гибридные облачные рабочие нагрузки с низкой задержкой.

«Расширение инфраструктуры Google Cloud в Солт-Лейк-Сити является долгожданным развитием, поскольку наш растущий бизнес продолжает расширяться для удовлетворения потребностей более 250 миллионов клиентов», — сказал Дэн Турнян, вице-президент PayPal по технологиям и опыту сотрудников и центров обработки данных. «Этот новый регион обеспечит повышенную доступность и производительность для наших клиентов, когда на счету каждая миллисекунда».

«Команда Юта рада приветствовать регион Google Cloud в Солт-Лейк-Сити», — сказала Тереза ​​Фоксли, президент и генеральный директор EDCUtah, частной некоммерческой организации, которая работает с государственными и местными органами власти и частной промышленностью, чтобы привлекать и развивать конкурентоспособные, высокие — оценивать компании и стимулировать расширение местных предприятий в штате Юта». Этот новый регион улучшит инфраструктуру облачных вычислений для предприятий, работающих в штате Юта, предоставит им более быстрый доступ к продуктам и услугам Google Cloud и сделает технические инновации еще ближе к тому, чем они занимаются. Мы с нетерпением ждем возможности приветствовать новый регион в Солт-Лейк-Сити в 2020 году».

Организации, работающие на западе США, вскоре смогут распределить свою рабочую нагрузку по трем западным регионам — Лос-Анджелесу, Орегону и, скорее, Солт-Лейк-Сити, — обеспечивая еще более высокую степень соединения на западе.

Что дальше
Облачные регионы Google переносят облако в организации по всему миру, способствуя росту, дифференциации и инновациям. В ближайшие недели регион Осака, Япония, откроется для клиентов, а регион Джакарта, Индонезия, как ожидается, начнет работу в первой половине 2020 года.

Мы с нетерпением ждем возможности приветствовать вас в этих новых регионах GCP, и мы рады видеть, что вы строите с нашей платформой. Следите за новостями региона и запустите в этом году. Посетите нашу страницу местоположений для получения дополнительной информации о доступности облачного региона или свяжитесь с отделом продаж, чтобы начать работу с GCP сегодня.

Мёд или жизнь: как AI-пчела понимает абстрактные концепции



Способность понимать абстрактные понятия, такие как «сходство» и «различие», считается когнитивной (познавательной) функцией высшего порядка наравне с вниманием и восприятием. Удивительно, но медоносные пчёлы обладают не только этой способностью, но также могут решать ряд простых и сложных ассоциативных задач.

Мы сделали конспект статьи, в которой расскажем о разработке новой нейронной сети, моделирующей структуру мозга медоносной пчелы.

Обучение абстрактным понятиям
Модель даёт достаточно точное представление о том, как реальные пчёлы воспринимают абстрактные понятия независимо от способа обработки информации.

Считается, что способность распознавать абстрактные концепции формирует основу мышления человека, а также других млекопитающих и птиц. Она связана с активностью нейронов в префронтальной коре головного мозга. Однако у медоносной пчелы нет ничего похожего на префронтальную кору в её гораздо меньшем мозге.

Для исследования способности насекомых обучаться абстрактным концепциям будет использоваться подход моделирования. Для начала мы более подробно опишем, как эту задачу решают медоносные пчёлы и другие животные.

Задачи «совпадает с образцом» («Match-To-Sample», MTS) разработаны для оценки обучения невербальному восприятию одинаковых и разных объектов. Животным сначала показывают один образец (стимул), а через некоторое время — два новых: первый соответствует изначальному, а второй нет. Чтобы изучить, какая продолжительность «рабочей памяти» («working memory») необходима для выполнения задачи, новые объекты показывались с задержками различной длины. Это называется «Delayed-Match-To-Sample» (DMTS).

Тесты, где животным надо наоборот выбирать не совпадающие с оригиналом предметы, называются «не совпадает с образцом» («NotMatch-To-Sample», NMTS или DMTS). Но этих задач недостаточно для демонстрации обучения абстрактным понятиям. Необходимо показать, что если животное научилось определять совпадающие или несовпадающие объекты, то оно сможет применить принцип сходства или различия и в новом контексте. Обычно это делается с помощью проверки на новом наборе образцов и называется трансферным тестом.

Исследования показали, что медоносные пчёлы могут учиться как DMTS, так и DNMTS-задачам и обобщать их на новые объекты. В опыте использовался лабиринт в форме буквы Y с исходным стимулом на входе и двумя разными объектами в каждом из ответвлений. Пчёлы прошли 60 испытаний, чтобы освоить эти задачи — это намного дольше, чем изучение простых обонятельных или визуально-ассоциативных навыков, для которых им требуется всего 3 испытания.

Показатели точности при этом не были идеальными — средняя эффективность составила около 75%, но это лучше, чем шанс простого «угадывания».

Концепция рабочей памяти имеет решающее значение для задач DMTS/DNMTS, поскольку животное не видит первоначальный стимул в процессе выбора. Если нет нейронной информации, которая могла бы идентифицировать совпадение, то проблема не может быть решена. Поэтому необходимо определить, как пчела запоминает эту информацию, и создать модель для решения задачи.

Модель строго ограничена установленными нейрофизиологическими и нейроанатомическими особенностями поведения настоящих пчёл. Мозг пчелы структурирован в виде отдельных областей нейропиля (зоны синаптического контакта). Особенности их взаимодействия хорошо изучены и описаны. Обучение происходит с помощью грибовидных тел (corpora penduculata) — они обрабатывают обонятельные, зрительные и механосенсорные данные.

До сих пор не было ясно, каким образом грибовидные тела и связанные с ними структуры могут изучать абстрактные понятия, которые не зависят от каких-либо специфичных особенностей объектов. Компьютерное моделирование грибовидного тела потребует реализации двух вычислительных компонентов: рабочей памяти для хранения идентичности образца и механизма для её использования, чтобы влиять на поведение модели в момент принятия решения.

Модель сети на основе мозга пчелы
Схема модели и основные принципы



A — нейроанатомия: MB (Mushroom Bodies) — грибовидные тела; AL (Antennal Lobe) — гломерулы антенной доли (круги); ME и LO — нейропили глубоких частей зрительной доли (Medulla и Lobula). Соответствующие нейронные пути помечены для сравнения с моделью.
B — упрощённая модель. Классы нейронов указаны справа.
C — полная модель, отражающая соединения и приблизительное число нейронов каждого типа. Цветовая маркировка и метки сохраняются на всех диаграммах.

Основные типы нейронов: KC (Kenyon Cells) — Клетка Кеньона, PCT (Protocerebellar Tract neurons) — протоцеребеллярный тракт нейронов, IN (Input Neurons) — входные нейроны (обонятельные или зрительные), EN (Extrinsic Neurons) — внешние нейроны грибовидных тел из субпопуляций GO и NOGO.

Грибовидное тело смоделировано как ассоциативная сеть из трёх слоёв. Входные нейроны IN обеспечивают обработку обонятельных, визуальных и механосенсорных данных. Слой клеток Кеньона KC выполняет разреженное кодирование (sparce-coding) сенсорной информации для эффективной классификации образцов. И, наконец, внешние нейроны грибовидного тела EN связаны с премоторной корой и активируют различные возможные поведенческие реакции. Для простоты мы рассматриваем EN как две субпопуляции, контролирующие только ответы «go» или «no-go» при выборе между различными вариантами объектов. Связи между выходом KC и EN модифицируются синаптической пластичностью и могут поддерживать изученные изменения в поведенческих реакциях на стимулы.

Как упоминалось выше, нам требуются два вычислительных механизма для решения задачи DMTS/DNMTS. Первый — находит средство для сохранения идентичности стимула, и второй — учится использовать эту идентичность для управления поведением и решения задачи.

Более того, результат обучения должен распространяться на новые стимулы, что требует большой вычислительной сложности.

У клеток Кеньона есть особенность, выполняющая требование обнаружения новизны — сенсорная аккомодация. У медоносных пчёл, даже при отсутствии вознаграждения или наказания за правильные или неправильные решения, KC резко снижают активность между начальными и повторными образцами до 50%. Этот эффект сохраняется в течение нескольких минут и может влиять на поведение во время испытания, но вряд ли повлияет на последующие опыты.

Теперь нам необходим второй механизм, который может использовать это свойство KC для управления поведением при выборе направления Y-лабиринта. При этом надо учесть, что пчёлы должны решать как DMTS, так и DNMTS-задачи, и не столкнуться с противоречием. Например, постсинаптическое обучение пропорционально увеличивает как более слабую (повторную) стимулирующую активность в субпопуляции GO EN, так и более сильную (единичную). Чтобы выбрать «go», активность GO для текущего стимула должна быть выше, чем активность NOGO, которая остаётся фиксированной. Это подойдёт для задачи DMTS, но в DNMTS должен применяться обратный принцип — ни одно правило постсинаптического обучения не удовлетворяет этому требованию.

Поэтому для решения DMTS и DNMTS задач необходим отдельный набор нейронов, которые могут выступать в роли переключателя между KC и поведением. Наиболее подходящий кандидат — тормозящие нейроны (inhibitory neurons), образующие протоцеребеллярный тракт (PCT). Они участвуют в регулировании входных данных для KC, и мы предполагаем, что они также могут регулировать активность популяций EN в выходные области KC с помощью синаптической пластичности. Если мы предположим, что при высоком пороге активности нейронов PCT повторные стимулы не будут их активировать, а единичные будут, тогда станет возможной синаптическая пластичность от PTC к EN. Это позволит решить DMTS и DNMTS задачи и передать это обучение новым стимулам.

Итак, мы представляем две модели, основанные на анатомии и свойствах мозга медоносной пчелы. Первая модель — упрощённая демонстрация того, что вышеизложенные принципы могут решать задачи DMTS и DNMTS и обобщать обучение для новых наборов образцов. Но эта модель не может продемонстрировать, что ассоциативное обучение в синапсах от KC до EN не препятствует обучению в синапсах от PCT до EN или наоборот. Поэтому вторая модель будет более полной и сможет решать как DMTS и DNMTS с переходом к новым стимулам, так и набор других ассоциативных задач.

Упрощённая модель
Упрощённая модель показана на рисунке (B). Входные узлы S1 и S2 — альтернативные стимулы, где KC для простоты разделены на два непересекающихся узла, поэтому нам не нужно отдельно моделировать входные нейроны IN. Узел I (который соответствует нейронам PCT, опять же в упрощённом виде) — это тормозящие нейроны, связанные с выходами GO и NOGO. Узлы S1 и S2 проецируются на узлы I, GO и NOGO с фиксированной возбуждающей взвешенной связью. I проецируется на GO и NOGO с помощью пластичных тормозящих взвешенных связей. Он имеет пороговое значение, поэтому реагирует только на новые стимулы.

Модель регулирует веса между I и GO, чтобы изменить вероятность выбора несоответствующего стимулу объекта. При этом веса от I до GO/NOGO инициализируются половиной максимального значения веса. Поскольку условия для изменения весов выполняются, когда для «go» выбирается единичный стимул, модель учится только на неудачных попытках для DMTS (увеличение веса) или успешных попытках для DNMTS (уменьшение веса).

Полная модель
Полная модель также изображена на рисунке ©. Ниже показана эффективность обеих моделей:


Области A и B показывают эффективность упрощённых моделей при обучении и переходе к новым образцам. Можно заметить, что процесс предварительного обучения сильно смещает модель в сторону единичных стимулов.

На области D изображена эффективность полной модели для первого блока обучения. Здесь тоже наблюдается смещение в сторону единичных образцов при обучении только по пути PCT. Это смещение уменьшается при наличии ассоциативного обучения по пути KC и не зависит от количества этапов предварительного обучения.

Область C отражает результаты обучения по пути от PCT к EN. Мы попытались подтвердить, что это позволило обеспечить обобщение результатов на новые наборы стимулов. Здесь из модели выборочно исключены: ассоциативное обучение по пути KC, обучение по пути PCT и полное обучение (синаптические веса остаются неизменными). На рисунке видно, что обучение по пути PCT является необходимым условием обобщения, в то время как обучение только по пути KC не влияет на эффективность этой задачи по сравнению с полностью исключённым обучением.

Эксперименты
Для того чтобы упростить задачу исследования нашей модели, мы воплотим её в мире, который можно описать конечным автоматом. Этот мир не сталкивается с некоторыми навигационными проблемами реального мира, но для доказательства эффективности модели такое упрощение приемлемо.

Экспериментальная установка Y-лабиринта изображена на рисунке ниже. Модель пчелы перемещается между набором состояний — различными местоположениями лабиринта: на входе, в центре справа, в центре слева, в правой ветви, в левой ветви.



Находясь у входа, пчела видит исходный стимул. В центральной камере перед ней два входа с объектами, из которых надо выбрать один согласно испытанию (DMTS или DNMTS).

В упрощённом Y-лабиринте модель пчелы может занять одно из трёх положений: на входе, в точке выбора перед левой ветвью, в точке выбора перед правой ветвью. В каждом положении для неё доступны два выбора: идти или не идти («go» и «no-go»). На входе всегда выбирается «go» — если пчёлы отказываются входить в лабиринт, то не участвуют в эксперименте. После этого случайно выбирается одна из ветвей: левая или правая. Если модель выбирает «no-go», то процедура повторяется, пока она не выберет «go». Поскольку на этом этапе обучения не происходит, модель может постоянно перемещаться между двумя входами, никогда не выбирая «go». Чтобы этого избежать, мы вводим равномерно распределённое случайное смещение в канал «go», которое увеличивается с числом раз, когда модель выбирает «no-go».

Нейроны IN делятся на непересекающиеся группы по 8 нейронов, каждая из которых представляет собой стимул:
  • Z: стимул для предварительного обучения
  • A, B: обучающие стимулы
  • C, D: стимулы для трансферного теста
  • E, F: стимулы для повторного трансферного теста

Нейроны в каждой из групп равны нулю, когда стимул отсутствует, и определённому значению, когда стимул активен. Это значение согласуется для каждой пчелы, но не между ними.

Предварительное обучение
Как и в опытах с реальными пчёлами, сначала мы знакомим наши простые модели с экспериментальным аппаратом. Мы проводим 10 этапов обучения с «поощрением» пчелы, которая входит в Y-лабиринт, без использования стимулов. После этого модель обучается ещё 10 этапов, чтобы перемещаться к каждой из ветвей лабиринта. В этом случае пчела не выбирает между «go» и «no-go», поскольку цель обучения — дать ей достаточное поощрение, чтобы потом она заходила в лабиринт и могла участвовать в дальнейшем эксперименте.

Обучение
Процедура состоит из 60 испытаний, разделённых на блоки по 10 испытаний. Опыт включает набор повторяющихся четырёх этапов: по два испытания с разными стимулами на входе в лабиринт. В каждом из испытаний объекты на левой и правой ветви менялись местами. Если модель решает задачу MTS, то она награждается за выбор объекта, совпадающего со стимулом, и наказывается за выбор другого. В задаче DMTS — наоборот.

Трансферный тест
В трансферном тесте мы не используем вознаграждение или наказание, а тестируем модели с помощью процедуры обучения, заменяя обучающие стимулы на тестовые. Используется два набора трансферных стимулов и 4 повторения (с заменой объектов в левой и правой ветви) для каждого из них.

Другие ассоциативные эксперименты
Теперь мы должны подтвердить, что наша модель может решать задачи обусловливания. Важный момент — они выполняются с точно такими же параметрами модели, как в DMTS/DNMTS; и характеристиками, обнаруженными в экспериментах на реальных пчёлах. Мы выбрали четыре опыта, включая эксперимент по обонятельному обучению с использованием рефлекса удлинения хоботка (proboscis extension reflex, PER), и визуальное обучение со свободно летающими пчёлами.

Обучение/переучивание
Эти эксперименты проводятся так же, как и DMTS, но с одним отличием — для первых 15 испытаний поощряется выбор одной соответствующей стимулу ветви (за неправильный выбор нет наказания), а после 15 испытания — другой соответствующей ветви. При этом не проводится никакого предварительного обучения, и данные анализируются для каждого опыта, а не для блоков по 10. В эксперименте используются 200 виртуальных пчёл.

Рефлекторное удлинение хоботка (PER)
Рефлекс удлинения хоботка — классический опыт с неподвижными пчёлами. В этом эксперименте пчёлы находятся в маленьких металлических трубках, открыты только голова и усики. Им подносят обонятельный стимул (условный раздражитель) и дают вознаграждение в виде раствора сахарозы (безусловный раздражитель). Для экспериментов PER мы разделяем нейроны IN так же, как было описано. Но так как пчёлы неподвижны, запахи представляются в заранее определённом порядке, и выбор пчелы на него не влияет.

Обучение одному запаху
В экспериментах с одним запахом обучение и тестирование происходят одновременно. Реальным пчёлам дают запах и с некоторой задержкой награждают раствором сахарозы. Если насекомое расширяет хоботок в течение задержки, его считают отреагировавшим, если нет — его всё равно награждают, но считают не отреагировавшим. Чтобы соответствовать этому плану, эффективность модели записывалась в каждом испытании, при этом NOGO — отсутствие реакции на стимул, GO — ответ на стимул. Награда давалась независимо от эффективности модели.

Положительное/отрицательное упорядочивание
Обучение делится на блоки, каждый из которых содержит четыре представления о запахе или комбинации запахов. При положительном упорядочивании мы не вознаграждаем отдельные запахи A и B, а только комбинацию AB (A -, B -, AB +). При отрицательном упорядочивании — наоборот (A +, B +, AB -). В обоих случаях объединённый запах используется дважды для каждого представления отдельных запахов, поэтому блоком для положительного упорядочивания является, например, [A -, AB +, B -, AB +], а для отрицательного: [A +, AB -, В +, AB -]. Эффективность оценивается так же, как при обучении одному запаху.

Результаты экспериментов показали, что полная модель способна успешно выполнять эти задачи. Количественная эффективность показана на рисунке ниже и почти соответствует экспериментам с реальными пчёлами.


Здесь A — обучение одному запаху, B — обучение/переучивание, C и D — положительное/отрицательное упорядочивание.

Использование модели
Упрощённая модель построена в GNU Octave, а полная модель создана с помощью набора инструментов SpineML и SpineCreator GUI (всё ПО с открытым исходным кодом). Входные векторы для нейронов IN и механизм состояний для навигации по Y-лабиринту моделируются с помощью сценария на Python через соединение TCP/IP.

Исходный код доступен на github.

Установите SpineML_2_BRAHMS, как описано здесь. Для простоты мы рекомендуем использовать Ubuntu Linux.

Клонируйте репозиторий с github и измените файл scripts/setup.py, добавив ваш путь к репозиторию и путь к SpineML.

Модель можно протестировать на разных экспериментах с помощью batch_X.py, а для анализа данных можно запустить сценарий process_data.py.

Если вы хотите визуализировать модель, то сделать это можно в SpineCreator GUI (инструкция по установке). Откройте файл .proj в каталоге /model с помощью меню File/Open Project в SpineCreator. Модель можно запускать из SpineCreator, но перед этим убедитесь, что вы запустили правильный файл scripts/world_X.py.

Упрощённую модель можно найти в каталоге /matlab_model и запустить в GNU Octave или Matlab.

Нейронные архитектуры, способные оперировать абстрактными понятиями — первый шаг на пути построения полноценного искусственного интеллекта. Развитие этих моделей позволит оперировать более сложными признаками и зависимостями, например, точнее распознавать эмоции из особенностей разных частей лица. Нейросети смогут оперировать не только сведениями об объектах, но и понимать их назначение и способы применения.

С оригинальной статьёй можно ознакомиться на портале biorxiv.org

Продажа оборудования

Добрый день, уважаемые клиенты и партнёры!
Продаём оборудование связи с расчисткой склада ЗИП:



Оплата наличными, возможность оплаты банковским счётом уточнять в отделе продаж. Гарантия месяц.
По вопросам приобретения обращаться в отдел продаж:
09:00–17:00 Пн.–Пт.: +7(3822)705-476, nov@netpoint-dc.com

Придумать идею для стартапа: гид по рабочим методикам



Что самое сложное в бизнесе? Искать инвесторов, обходить конкурентов или вести бухгалтерию — трудно, но это обязательные составляющие. Самое сложное для предпринимателя — найти идею, ради которой захочется работать 24 часа в сутки. Идею, которая будет вдохновлять не только тебя, но и окружающих. Из которой вырастет перспективный бизнес.

Чтобы генерировать такие идеи, не надо быть Илоном Маском или Николой Теслой. Достаточно замечать проблемы и использовать готовые алгоритмы. В этой статье мы расскажем, как получить бесконечный список идей для бизнеса.

Чем стартап-идея отличается от традиционного бизнеса?
Стартап — компания, которая тестирует нетрадиционные бизнес-модели, чтобы повысить маржинальность или снизить порог входа на рынок. Но если вы используете необычные пути развития, возникает необходимость в гипотезах и проверках. Во всех остальных случаях ничего изобретать не надо — результат дают профессионалы, дешёвые деньги и проверенные стратегии. Говоря проще, стартап при равных усилиях должен приносить намного больше денег, чем традиционный бизнес.

4 способа придумать идею конкурентоспособного бизнеса
Ниже шпаргалка для тех, кто хочет перевернуть экономику и придумать что-то по-настоящему новое и, что важно, полезное — инструменты для генерации бизнес-идей. Что интересно — результат зависит только от вашей смекалки, кругозора и усердия. И, скорее всего, эти идеи будут уникальны, потому что окружение и манера думать у всех нас разные.

1. Шесть шляп мышления Эдварда де Боно

Случалось вам садиться за ноутбук с целью придумать новый бизнес, продукт или решение давней проблемы, а в итоге вы отвлекались на другие задачи? Просто ваше мышление — это хаос и это нормально. Чтобы добиться результата, Эдвард де Боно предложил разбить мышление на шесть режимов, фокусируясь только на одном из них, решая конкретную задачу. Чтобы было нагляднее, для каждого режима придумали цветную шляпу (шляпа может быть как образной, так и самой настоящей — всё на ваше усмотрение).
  • Синяя шляпа — управление и координация. Надевается в начале, чтобы обозначить стратегию и периодически по ходу мышления, чтобы контролировать процесс.
  • Белая шляпа — информация и факты. Анализируем, каких данных не хватает и где их можно найти. Смотрим, какие цифры уже устарели, соответствует ли статистика действительности.
  • Красная шляпа — эмоции и чувства. Высказывания делаются на основании личных переживаний и предпочтений, хорошо подходит для оценки дизайна и эстетической стороны решения.
  • Чёрная шляпа — критическое мышление. Выявляются возможные риски, опасности и препятствия. Хорошо тормозит поток сознания красной шляпы, но надевать раньше нее нельзя, чтобы не испортить творческий запал.
  • Жёлтая шляпа — оптимистичность. Позитивные ожидания и предположения.
  • Зелёная шляпа — креативность. Необычные творческие идеи и даже провокационные решения. Полёт мысли, который часто применяют после черной шляпы, чтобы найти интересное решение обозначенных проблем.

Чтобы решения и особенности шляп не противоречили друг другу, а главное — не урезали общую эффективность мозгового штурма, методика Боно подразумевает разные порядки, в которых надеваются шляпы:
  1. Разработка идей на старте — Синяя, Белая, Зелёная, Синяя.
  2. Выбор из альтернатив — Синяя, Белая, (Зелёная), Жёлтая, Чёрная, Красная, Синяя.
  3. Выбор решения — Синяя, Белая, Чёрная, Зелёная, Синяя.
  4. Быстрая обратная связь — Синяя, Чёрная, Зелёная, Синяя.
  5. Стратегическое планирование — Синяя, Жёлтая, Чёрная, Белая, Синяя, Зелёная, Синяя.
  6. Усовершенствование процесса — Синяя, Белая, Белая (мнения других участников), Жёлтая, Чёрная, Зелёная, Красная, Синяя.
  7. Решение проблем — Синяя, Белая, Зелёная, Красная, Жёлтая, Чёрная, Зелёная, Синяя.
  8. Обзор результатов — Синяя, Красная, Белая, Жёлтая, Чёрная, Зеленая, Красная, Синяя.

Метод подходит как для групповой дискуссии, там и для индивидуальной работы. Его плюсы в том, что можно развернуть привычный ход мыслей на 180 градусов, вывести из состояния равновесия самых застенчивых членов команды. Исключается пустая болтовня, полярные точки зрения не конфликтуют, а мирно сосуществуют рядом.

2. Идеи, которые осталось заметить

В своей статье Юрий Лифшиц из образовательного стартапа для предпринимателей EarlyDays. io говорит, что создавать идеи — это навык, который нужно тренировать. Для этого важна привычка видеть возможности для запуска новых бизнесов во всём, что вас окружает. Например, замечать боли людей или собственные проблемы, а потом решать их. Не нравится медленный лифт — придумайте быстрый, надоел пьяный сосед — придумайте супертонкий звукоизолятор. Для этого Лифшиц предлагает несколько методик:
  1. Живите в будущем. Читайте фантастику, придумайте то, чего вчера не существовало, читайте о новых изобретениях и думайте, как бы вы их улучшили.
  2. Подумайте, где взять дешевле и кому подороже продать. Развивающиеся страны предоставляют доступную рабочую силу, а государства Старого и Нового света — обеспеченных клиентов.
  3. Копируйте и развивайтесь. Позаимствуйте чужую идею. Позаимствуйте, а потом сделайте её немного лучше. Поднимитесь на носочки, загляните за забор. Иногда идеи десятилетиями медленно переползают океан.
  4. Путешествуйте. Привычная манера жизни в одной стране может быть революционной в другой стране. Самое главное — она отличается и это можно протестировать. Общайтесь с умными людьми, будьте открыты к чужому мнению.

Конечно, чтобы воплотить идею в жизнь, надо быть экспертом. Мало быть романтиком, вооруженным благими намерениями. Чтобы делать бизнес, надо быть лучшим специалистом своей отрасли. Это сложно, но только так идея трансформируется в гарантированный способ создать собственную сильную компанию.

3. Матрица стартапов
Мозговые штурмы и недельные моделирования не про вас? Для таких стартаперов Эрик Стромберг разработал матрицу с идеями. Она описывает по вертикали потребительские рынки, а по горизонтали — возможные тактики. На пересечении получается потенциальная стратегия выхода на рынок. Посмотреть таблицу вы можете в гугл-документе. Он доступен для просмотра всем пользователям.

4. Теория решения изобретательских задач (ТРИЗ)
Теорию решения изобретательских задач разработал советский ученый Генрих Альтшуллер. Он проанализировал более 40 000 изобретений и создал свои алгоритмы, следуя которым можно находить небанальные решения в, казалось бы, безвыходных ситуациях. Кроме того, с помощью этой методики можно не только разработать инновационный продукт, но и улучшить существующие процессы в вашем бизнесе.

Вот некоторые методики ТРИЗ:
  • Принцип вынесения. Отделить от целого ту часть, которая мешает больше всего (проблема, которую надо решить). Например, проанализируйте на что вы больше всего тратите время, занимаясь бизнесом, и выделите ту деятельность, которая не является для вас основной. Рассмотрите возможность передать эту деятельность на аутсорсинг.
  • Принцип асимметрии. Например, применяйте различные стратегии для каждого класса потребителей.
  • Принцип универсальности. Например, вы можете привлечь для разработки вашего сайта fullstack-разработчика, который будет разрабатывать дизайн и писать код.
  • Принцип наоборот. Поощряйте клиентов оставлять негативные отзывы. В обычной ситуации вы бы не стали такое делать, но жалобы клиентов помогут выявить недостатки вашего продукта или сервиса.
  • Принцип проскока. Старайтесь ускорить некоторые трудные или вредные процессы производства до максимальной скорости.

⌘⌘⌘

Вас окружают возможности. Они в привычных продуктах и услугах, в знакомых людях и в вас самих. Но идеи, которые переворачивают мир, не родятся сами собой — придётся меняться. В следующем материале мы расскажем как проверить вашу идею для стартапа на жизнеспособность.

www.reg.ru