Как начать работу с Keras, Deep Learning и Python



Специально для тех, кто только начинает осваивать Deep Learning и нейронные сети, мы подготовили перевод очень полезной статьи. Из неё вы узнаете, как использовать библиотеку Keras для обучения своей первой нейронной сети с собственным набором изображений, а также сможете создать свёрточную нейронную сеть (CNN).

Большинство учебных пособий по Keras основаны на работе со стандартными датасетами, такими как MNIST (распознавание рукописного ввода цифр) или CIFAR-10 (распознавание базовых объектов). Они помогут вам начать использовать Keras, но не смогут научить работать с собственными наборами изображений — вы просто будете вызывать вспомогательные функции для загрузки предварительно скомпилированных датасетов.

Поэтому вместо того, чтобы вновь обращаться к предкомпилированным датасетам, мы рассмотрим, как обучить вашу первую нейронную сеть и CNN на оригинальном наборе изображений, как этого и требуют реальные задачи.

Содержание
1. Установка Keras и другого необходимого ПО
2. Загрузка ваших данных с диска
3. Разбиение их на обучающую и тестовую выборки
4. Определение архитектуры вашей модели Keras
5. Компиляция вашей модели
6. Обучение модели
7. Оценка модели на тестовой выборке
8. Распознавание изображений с использованием обученной модели
9. Бонус: обучение свёрточной нейронной сети
www.reg.ru/blog/keras/

0 комментариев

Оставить комментарий