Новое решение Selectel для клиентов «Облака на базе VMware» включает защиту от DDoS по умолчанию и бесплатно

Selectel первым из российских компаний подключил бесплатную защиту от DDoS-атак всем клиентам облака на базе VMware. Решение позволит снизить затраты бизнеса на хостинг повышенной надежности до 20%.

DDoS-атаки — один из самых популярных видов нападения на инфраструктуру компаний. Самые распространенные и легко организуемые атаки — volumetric, или объемные. Суть таких атак — в резком повышении объема трафика на сайт, в результате чего он просто не выдерживает и «падает». Рост количества таких атак — тренд, который эксперты рынка наблюдают в течение последних нескольких лет.

Для сервисов с высокими требованиями к доступности затраты на защиту инфраструктуры от таких атак могут составлять до 20% от стоимости всего Облака. Новое решение Selectel для клиентов «Облака на базе VMware» включает защиту от DDoS по умолчанию и бесплатно. Решение помогает бизнесу повысить стабильность облачной инфраструктуры, предотвращает недоступность инфраструктуры из-за DDoS и обеспечивает минимальные задержки при доставке трафика в момент атаки.

«DDoS-атаки — один из самых простых и дешевых способов атаковать инфраструктуру клиента. Количество и мощность атак на сервисы в публичных облаках постоянно растет. Поэтому реализация защиты от DDoS всего “Облака на базе VMware” — важная веха в развитии услуги. Она позволит нашим клиентам получать стабильное и надежное решение без дополнительных затрат и настроек», — сказал Иван Колегов, менеджер продукта VMware, Selectel.

Решение реализовано на базе сервиса от российской компании DDoS-GUARD, и распространяется на все публичные IP-адреса клиентов Облака на базе VMware во всех регионах.

«Облако на базе VMware» от Selectel соответствует требованиям федерального закона № 152-ФЗ «О персональных данных». В нем можно обрабатывать и хранить персональные данные до третьего уровня защищенности. В июне 2019 года продукт Selectel «Облако на базе VMware»отметили знаком доверия VMware Cloud Verified.

Приглашаем на вебинар по VMware



Из on-premises в облако — легко и без рисков
  • Только факты. Расскажем о нюансах построения облачной инфраструктуры и ее отличиях от on-premises.
  • Кейсы. Покажем, как настроить vCloud Availability. Расскажем о полезных инструментах VMware.
  • Обратная связь. Ответим на вопросы, обсудим ваши кейсы.

Присоединяйтесь и прокачивайте свои знания по VMware!
Все подробности — по ссылке.
promo.selectel.ru/webinar_vmware_20_02_2020/

Спикер:
Иван Колегов — менеджер продукта VMware, Selectel.

Нагрузочное тестирование VBR для VMware



В этой статье мы хотим рассказать о результатах нагрузочного тестирования VBR для двух наиболее популярных режимов работы бэкап-прокси с учетом вариации количества параллельных задач.

Весной 2018 года Selectel запустил услугу резервного копирования для Облака на базе VMware посредством Veeam Backup&Replication (VBR). К реализации проекта мы подошли основательно, спланировали и выполнили следующий перечень работ:
  • Изучение документации и лучших практик по продуктам Veeam
  • Разработку архитектуры VBR уровня сервис-провайдера
  • Развертывание инфраструктуры VBR
  • Тестирование решения, определение оптимальных настроек и режимов работы
  • Запуск решения в промышленную (коммерческую) эксплуатацию
Как оказалось – не зря. Услуга стабильно функционирует, клиенты могут бэкапить свои виртуалки, а у нас появилась определенная экспертиза, которой мы хотим поделиться.

Здесь вы сможете увидеть:
  • Описание production-инфраструктуры Selectel, использованной для тестирования
  • Особенности работы бэкап-прокси (backup proxy) в различных транспортных режимах
  • Описание программы тестирования и настроек компонентов VBR для её реализации
  • Количественные показатели, их сравнение и выводы
  • Конфигурация инфраструктуры для проведения тестов
  • Инфраструктура-источник
В качестве платформы для тестирования производительности VBR выступил один из production-кластеров публичного Облака на базе VMware.

Аппаратная конфигурация хостов данного кластера:
  • Процессоры Intel Xeon Gold 6140
  • NVMe-накопители Intel DC P4600 и P3520
  • 4 порта 10GbE на хост
В основе кластера лежат следующие решения:
  • Физическая сеть – Ethernet-фабрика на коммутаторах Brocade VDX, архитектура Leaf-Spine (10GbE порты – подключение хостов, 40GbE аплинки до Spine)
  • Среда виртуализации – VMware vSphere 6.5
  • Хранение данных ВМ – VMware vSAN 6.6 (All-Flash кластер vSAN)
  • Виртуализация сети – VMware NSX 6.4
Производительность платформы для тестирования более чем достаточна и не вызывает никаких сомнений. Конечно, для высокого быстродействия всё это должно быть правильно настроено, но поскольку это production, с живыми и довольными клиентами, можно быть уверенным, что и в этом плане всё хорошо.

Вместе с Облаком на базе VMware, Selectel запустил услугу для его бэкапа на платформе VBR. Заказчики получают web-портал самообслуживания, в котором могут выполнять бэкап и восстановление vApp и ВМ из своих VDC (виртуальный дата-центр).

Доступ клиентов к данному порталу (Veeam Enterprise Manager Self-service portal) осуществляется с теми же правами, что и к vCloud Director (vCD). Это возможно благодаря интеграции Veeam Backup Enterprise Manager (EM) и vCD, при этом каждый клиент при подключении к ЕМ ограничен ресурсами своих VDC, чужие ВМ он не увидит.

Клиенту не нужно разворачивать собственный VBR и связанную с ним инфраструктуру бэкапа, что предполагает затраты на вычислительные и сетевые ресурсы, хранилище, лицензии Veeam и MS, администрирование. Это долго, дорого и сложно. Selectel предоставляет основные возможности VBR как услугу BaaS (Backup-as-a-Service): мгновенно, просто, удобно, экономично.

Для предоставления данной услуги в Selectel была развернута провайдерская инфраструктура VBR, охватывающая все кластеры vSphere и VDC клиентов облака VMware, в том числе кластер, в котором проводилось данное тестирование. Таким образом, результаты тестов позволят судить о максимальной скорости, с которой клиенты смогут бэкапить свои ВМ.

Тестовые ВМ
Для тестирования производительности бэкапа в кластере vSphere было развернуто 6 идентичных ВМ в следующей конфигурации:
  • ОС Windows Server 2016, 2 vCPU, 4GB RAM
  • 200GB vDisk
Диск занят почти полностью – 193GB. Кроме файлов ОС, на нем создана папка с дистрибутивами различных ОС и СУБД объёмом 60GB (уникальные данные). На том же диске создано 3 копии данной папки – итого 180GB несистемных данных.

Никаких приложений на эти ВМ установлено не было, только «чистая» ОС и «холодные» данные. Никакой нагрузки, вычислительной или сетевой, не запускалось. В рамках данного тестирования этого не требовалось.

В кластере vSphere включен DRS, поэтому тестовые ВМ автоматически оптимально распределяются по хостам VMware ESXi для балансировки нагрузки.

Бэкап-прокси
ВМ с бэкап-прокси развернута непосредственно в описанном выше кластере vSphere (инфраструктура-источник, далее – кластер vSphere), это необходимое условие для тестирования в режиме Virtual Appliance.

Конфигурация ВМ:
  • 8 vCPU
  • 8GB RAM
  • 40GB vDisk
  • 10GbE vNIC vmxnet3
  • ОС Windows Server 2016
Параметр «Max concurrent tasks» для бэкап-прокси на уровне VBR выставлен в значение 6. Это значит, что бэкап-прокси сможет одновременно (параллельно) обрабатывать до 6 задач (task) бэкапа. Один task – это бэкап одного виртуального диска ВМ.

Репозиторий бэкапа
В качестве фронтенда хранилища бэкапов выступает физический сервер, выполняющий роль бэкап-репозитория VBR. Конфигурация сервера:
  • CPU Е5-1650v3
  • 32GB RAM
  • 2 порта 10GbE
  • Бекенд хранилища – кластер CephFS c NVMe-кэшем.

Бэкап-репозиторий и узлы Ceph общаются по сети 10GbE, каждый из них подключен к коммутаторам двумя портами.

Подробное описание конфигурации кластера Ceph выходит за рамки данной статьи. Отметим, что для надежности и отказоустойчивости данные на нем хранятся в трех копиях. Производительность кластера не вызывает нареканий и заложена с запасом, результаты тестов показали, что ни в одном из них хранилище бэкапов не являлось узким местом.

Параметр «Limit maximum concurrent tasks» для бэкап-репозитория на уровне VBR выставлен в значение 6. Это значит, что бэкап-репозиторий сможет одновременно (параллельно) обрабатывать до 6 задач (tasks) бэкапа.

Сеть бэкапа
Физическая сеть описанной выше инфраструктуры ограничена полосой пропускания 10Гбит/с, везде используются коммутаторы и порты 10GbE. Это справедливо не только для сети vSAN, но и для менеджмент-интерфейсов хостов ESXi.

Для размещения бэкап-прокси на уровне VMware NSX создана выделенная подсеть со своим логическим коммутатором. Для её связности с физикой и осуществления маршрутизации развернут NSX-edge, размер X-large.

Забегая вперед, по результатам тестов видно, что сеть выдерживает нагрузку до 8Гбит/с. Это весьма солидная пропускная способность, которой на данном этапе хватает, при необходимости она может быть увеличена.

Схема взаимодействия компонент

Схема взаимодействия компонентов
Бэкап-прокси и тестовые ВМ развернуты внутри одного кластера VMware vSAN. После запуска задания бэкапа (бэкап-джобы) в зависимости от выбранного транспортного режима, особенности которых рассмотрены ниже, бэкап-прокси:
  • Извлекает данные из бэкапируемых ВМ по сети vSAN (HotAdd) или по сети управления (NBD)
  • Передает обработанные данные на бэкап-репозиторий по выделенной для этой цели подсети

Транспортные режимы бэкап-прокси
Бэкап-прокси (Backup proxy) является компонентом инфраструктуры VBR, непосредственно выполняющим обработку задания бэкапа. Он извлекает данные из ВМ, обрабатывает их (сжимает, дедуплицирует, шифрует) и отправляет на репозиторий, где они сохраняются в файлы бэкапа.

Бэкап-прокси позволяет работать в трёх транспортных режимах:
  • Direct storage access
  • Virtual appliance
  • Network
Облако на базе VMware Selectel в качестве хранилища использует vSAN, в такой конфигурации Direct storage access не поддерживается, поэтому данный режим не рассматривается и не был протестирован. Оставшиеся два режима замечательно работают на каждом из наших кластеров vSphere, остановимся на них подробнее.

Режим Virtual appliance (HotAdd)
Virtual appliance – рекомендуемый режим при развертывании бэкап-прокси в виде ВМ. Хосты ESXi, на которых развернуты бэкап-прокси, должны иметь доступ ко всем Datastore кластера vSphere, хранящим бэкапируемые ВМ. Суть режима заключается в том, что прокси монтирует к себе диски бэкапируемых ВМ (VMware SCSI HotAdd) и забирает с них данные как с собственных. Извлечение данных происходит с Datastore по сети хранения.

В нашем случае бэкап-прокси ВМ должна находиться на одном из хостов ESXi кластера vSAN, который мы бэкапим. Извлечение данных происходит по сети vSAN. Таким образом, для работы в режиме Virtual appliance в каждом кластере vSAN должно быть развернуто минимум по одному бэкап-прокси. Развернуть пару бэкап-прокси (например, в менеджмент-кластере) и бэкапить ими все кластеры vSAN не получится.

Подробнее тут
blog.selectel.ru/nagruzochnoe-testirovanie-vbr-dlya-vmware/

vSAN в облаке на базе VMware



Задачи хранения и доступа к данным являются болевой точкой для любой информационной системы. Даже у хорошо спроектированной системы хранения данных (далее СХД) в процессе эксплуатации выявляются проблемы, связанные со снижением производительности. Отдельного внимания заслуживает комплекс проблем масштабирования, когда количество задействованных ресурсов приближается к установленным лимитам, заложенным разработчиками СХД.

Фундаментальной причиной возникновения этих проблем является традиционная архитектура, основанная на жесткой привязке к аппаратным характеристикам используемых устройств хранения данных. Большинство клиентов до сих пор выбирают способ хранения и доступа к данным с учетом характеристик физических интерфейсов (SAS / SATA / SCSI), а не реальных потребностей используемых приложений.

Еще десяток лет назад это было логичным решением. Системные администраторы тщательно выбирали накопители информации с требуемой спецификацией, например SATA/SAS, и рассчитывали на получение уровня производительности, исходя из аппаратных возможностей дисковых контроллеров. Борьба шла и за объемы кэшей RAID-контроллеров и за опции, предотвращающие потерю данных. Сейчас такой подход к решению проблемы не является оптимальным.

В текущих условиях при выборе СХД имеет смысл отталкиваться не от физических интерфейсов, а от производительности, выраженной в IOPS (количество операций ввода-вывода в секунду). Использование виртуализации позволяет гибко использовать существующие аппаратные ресурсы и гарантировать требуемый уровень производительности. Мы со своей стороны готовы предоставить ресурсы с теми характеристиками, которые реально необходимы приложению.

Виртуализация СХД
С развитием систем виртуализации требовалось найти инновационное решение для хранения и доступа к данным, одновременно обеспечивая отказоустойчивость. Это стало отправной точкой для создания SDS (Software-Defined Storage). Чтобы удовлетворять бизнес-потребностям, такие хранилища проектировались с разделением программного и аппаратного обеспечения.

Архитектура SDS в корне отличается от традиционной. Логика хранения стала абстрагироваться на программном уровне. Организация хранения стала проще за счет унификации и виртуализации каждого из компонентов такой системы.

Что же является основным фактором, препятствующим внедрению SDS повсеместно? Этим фактором чаще всего оказывается некорректная оценка потребностей используемых приложений и неверная оценка рисков. Для бизнеса выбор решения зависит от затрат на внедрение, исходя из текущих потребляемых ресурсов. Мало кто думает — что будет, когда объем информации и требуемая производительность превысит возможности выбранной архитектуры. Мышление на базе методологического принципа «не следует множить сущее без необходимости», более известного как «лезвие Оккама», обуславливает выбор в пользу традиционных решений.

Лишь немногие понимают, что необходимость в масштабировании и надежности хранения данных важнее, чем кажется на первый взгляд. Информация это ресурс, а следовательно, риск ее потери необходимо страховать. Что будет, когда традиционная СХД выйдет из строя? Потребуется воспользоваться гарантией либо купить новое оборудование. А если СХД снята с производства или у нее закончился «срок жизни» (так называемый EOL — End-of-Life)? Это может стать «черным днем» для любой организации, которая не сможет продолжать использовать привычные собственные сервисы.

Не существует систем, которые бы не имели ни одной точки отказа. Зато есть системы, которые способны без проблем пережить отказ одного или нескольких компонентов. И виртуальные, и традиционные СХД создавались с учетом того, что рано или поздно произойдет сбой. Вот только «лимит прочности» традиционных СХД заложен аппаратно, а вот в виртуальных СХД он определяется в программном слое.

Интеграция
Кардинальные перемены в IT-инфраструктуре всегда нежелательное явление, чреватое простоями и потерей средств. Только плавное внедрение новых решений дает возможность избежать негативных последствий и улучшить работу сервисов. Именно поэтому Selectel разработал и запустил облако на базе VMware, признанного лидера на рынке систем виртуализации. Созданная нами услуга позволит каждой компании решить весь комплекс инфраструктурных задач, в том числе и по хранению данных.

Расскажем о том, как именно мы решили вопрос с выбором системы хранения данных, а также какие преимущества дал нам этот выбор. Разумеется, что рассматривались как традиционные системы хранения данных, так и SDS. Чтобы четко понимать все аспекты эксплуатации и риски, предлагаем детально углубиться в тему.

Еще на этапе проектирования к СХД предъявлялись следующие требования:
  • отказоустойчивость;
  • производительность;
  • масштабирование;
  • возможность гарантировать скорость работы;
  • корректная работа в экосистеме VMware.
Использование традиционных аппаратных решений не могло обеспечить требуемый уровень масштабирования, поскольку невозможно постоянно наращивать объем хранилища из-за ограничений архитектуры. Также большую сложность представляло резервирование на уровне целого дата-центра. Именно поэтому мы обратили внимание на SDS.

На рынке SDS присутствует несколько программных решений, которые бы подошли нам для построения облака на базе VMware vSphere. Среди этих решений можно отметить:
  • Dell EMC ScaleIO;
  • Datacore Hyper-converged Virtual SAN;
  • HPE StoreVirtual.
Указанные решения пригодны для использования c VMware vSphere, однако не встраиваются в гипервизор и запускаются отдельно. Поэтому выбор был сделан в пользу VMware vSAN. Рассмотрим детально, как выглядит виртуальная архитектура такого решения.

Архитектура


В отличие от традиционных СХД вся информация не хранится в какой-то одной точке. Данные виртуальных машин равномерно «размазаны» между всеми хостами, а масштабирование осуществляется добавлением хостов или установкой на них дополнительных дисковых накопителей. Поддерживается два варианта конфигурации:
  • AllFlash-конфигурация (только твердотельные накопители, как для хранения данных, так и для кэша);
  • Hybrid-конфигурация (магнитные накопители для хранения данных и твердотельные для кэша).
Процедура добавления дискового пространства не требует дополнительных настроек, например, создания LUN (Logical Unit Number, логических номеров дисков) и настройки доступа к ним. Как только хост добавлен в кластер, его дисковое пространство становится доступным для всех виртуальных машин. Такой подход имеет ряд существенных преимуществ:
  • отсутствие привязки к производителю оборудования;
  • повышенная отказоустойчивость;
  • обеспечение целостности данных в случае сбоя;
  • единый центр управления из консоли vSphere;
  • удобное горизонтальное и вертикальное масштабирование.
Однако эта архитектура предъявляет повышенные требования к сетевой инфраструктуре. Для обеспечения максимальной пропускной способности, в нашем облаке сеть построена по модели Spine-Leaf.

Сеть
Традиционная трехуровневая сетевая модель (ядро / агрегация / доступ) имеет ряд существенных недостатков. Ярким примером являются ограничения Spanning-Tree протоколов.

В модели Spine-Leaf используется только два уровня, что дает следующие преимущества:
  • предсказуемое расстояние между устройствами;
  • трафик идет по наилучшему маршруту;
  • легкость масштабирования;
  • исключение ограничений протоколов уровня L2.
Ключевой особенностью такой архитектуры является то, что она максимально оптимизирована для прохождения «горизонтального» трафика. Пакеты данных проходят только через один хоп, что позволяет четко оценивать задержки.

Физическое соединение обеспечивается с помощью нескольких 10GbE-линков на каждый сервер, пропускная способность которых объединяется с помощью протокола агрегации. Таким образом, каждый физический хост получает высокую скорость доступа ко всем объектам хранилища.

Обмен данными реализуется с помощью проприетарного протокола, созданного VMware, позволяющего обеспечить быструю и надежную работу сети хранения на Ethernet-транспорте (от 10GbE и выше).

Переход к объектной модели хранения данных позволил гибко подстраивать использование хранилища в соответствие с требованиями заказчиков. Все данные хранятся в виде объектов, которые определенным образом распределяются по хостам кластера. Уточним значения некоторых параметров, которыми можно управлять.

Отказоустойчивость
  • 1. FTT (Failures To Tolerate). Обозначает количество отказов хостов, которые кластер способен обработать, не прерывая штатной работы.
  • 2. FTM (Failure Tolerance Method ). Метод обеспечения отказоустойчивости на уровне дисков.
Mirroring (зеркалирование)

Представляет собой полное дублирование объекта, причем реплики всегда находятся на разных физических хостах. Ближайшим аналогом такого метода является RAID-1. Его использование позволяет кластеру штатно обработать до трех отказов любых компонентов (диски, хосты, потеря сети и прочее). Этот параметр настраивается посредством задания опции FTT.

По-умолчанию эта опция имеет значение 1, при этом для объекта создается 1 реплика (всего 2 экземпляра на разных хостах). При увеличении значения, количество экземпляров будет составлять N+1. Таким образом, при максимальном значении FTT=3 на разных хостах будут находиться 4 экземпляра объекта.

Такой метод позволяет достичь максимальной производительности в ущерб эффективности использования дискового пространства. Допускается использование как в гибридной, так и в AllFlash-конфигурации.

Erasure Coding (аналог RAID 5/6)


Работа данного метода поддерживается исключительно на AllFlash-конфигурациях. В процессе записи каждого объекта вычисляются соответствующие блоки четности, позволяющие однозначно восстановить данные при возникновении сбоя. Такой подход существенно экономит дисковое пространство по сравнению с Mirroring.

Разумеется, работа подобного метода повышает накладные расходы, которые выражаются в снижении производительности. Тем не менее, с учетом производительности AllFlash-конфигурации, этот недостаток нивелируется, делая использование Erasure Coding приемлемым вариантом для большинства задач.

Кроме того, VMware vSAN вводит понятие «доменов отказа», представляющих собой логическое группирование серверных стоек или дисковых корзин. Как только необходимые элементы сгруппированы, это приводит к распределению данных по разным узлам с учетом доменов отказа. Это позволяет кластеру пережить потерю целого домена, поскольку все соответствующие реплики объектов будут располагаться на других хостах в другом домене отказа.

Минимальным доменом отказа является дисковая группа, представляющая собой логически связанные дисковые накопители. Каждая дисковая группа содержит в себе носители двух типов — cache и capacity. В качестве cache-носителей система позволяет использовать только твердотельные диски, а в качестве capacity-носителей могут выступать как магнитные, так и твердотельные диски. Кэширующие носители помогают ускорить работу магнитных дисков и уменьшить задержку при доступе к данным.

Реализация
Поговорим о том, какие ограничения существуют в архитектуре VMware vSAN и зачем они нужны. Вне зависимости от используемых аппаратных платформ, архитектура предусматривает следующие ограничения:
  • не более 5 дисковых групп на хост;
  • не более 7 capacity-носителей в дисковой группе;
  • не более 1 cache-носителя в дисковой группе;
  • не более 35 capacity-носителей на хост;
  • не более 9000 компонентов на хост (включая witness-компоненты);
  • не более 64 хостов в кластере;
  • не более 1 vSAN-datastore на кластер.
Зачем это нужно? Пока указанные лимиты не превышены, система будет функционировать с заявленной производительностью, поддерживая баланс между производительностью и объемом хранения. Это позволяет гарантировать корректную работу всей виртуальной СХД в целом.

Помимо указанных ограничений следует помнить одну важную особенность. Не рекомендуется заполнять более 70% общего объема хранилища. Дело в том, что при достижении 80% автоматически запускается механизм ребалансировки, и система хранения начинает перераспределять данные по всем хостам кластера. Процедура достаточно ресурсоемкая и может серьезно сказаться на производительности дисковой подсистемы.

Чтобы удовлетворить потребности самых разных клиентов, нами было реализовано три пула хранения данных для удобства использования в различных сценариях. Давайте рассмотрим каждый из них по порядку.

Пул с быстрыми дисками
Приоритетом для создания этого пула было получить хранилище, которое обеспечит максимальную производительность для размещения высоконагруженных систем. Серверы из этого пула используют пару Intel P4600 в качестве кэша и 10 Intel P3520 для хранения данных. Кэш в этом пуле используется таким образом, чтобы чтение данных происходило напрямую с носителей, а операции записи происходили через кэш.

Для увеличения полезной емкости и обеспечения отказоустойчивости используется модель хранения данных под названием Erasure Coding. Такая модель схожа с обычным массивом RAID 5/6, но на уровне объектного хранилища. Чтобы исключить вероятность повреждения данных, vSAN использует механизм вычисления контрольных сумм для каждого блока данных, размером 4К.

Проверка осуществляется в фоновом режиме во время операций чтения/записи, а также для «холодных» данных, доступ к которым не запрашивался в течение года. При выявлении несовпадения контрольных сумм, а следовательно, повреждения данных, vSAN автоматически восстановит файлы путем перезаписи.

Пул с гибридными дисками
В случае с этим пулом, его основной задачей является предоставление большого объема данных, обеспечивая при этом хороший уровень отказоустойчивости. Для многих задач скорость доступа к данным не является приоритетной, гораздо более важен объем, а еще стоимость хранения. Использование твердотельных накопителей в качестве такого хранилища будет иметь необоснованно высокую стоимость.

Этот фактор и послужил причиной создания пула, который представляет собой гибрид из кэширующих твердотельных накопителей (как и в других пулах это Intel P4600) и жестких дисков корпоративного уровня, разработанные компанией HGST. Гибридная схема работы ускоряет доступ к часто запрашиваемым данным, за счет кэширования операций чтения и записи.

На логическом уровне данные зеркалируются для исключения потери в случае сбоя оборудования. Каждый объект разбивается на идентичные компоненты и система распределяет их по разным хостам.

Пул с Disaster Recovery


Основной задачей пула является достижение максимального уровня отказоустойчивости и производительности. Задействование технологии Stretched vSAN позволило нам разнести хранилище между дата-центрами Цветочная-2 в Санкт-Петербурге и Дубровка-3 в Ленинградской области. Каждый сервер из данного пула оснащен парой емких и высокоскоростных накопителей Intel® P4600 для работы кэша и по 6 штук Intel® P3520 для хранения данных. На логическом уровне это 2 дисковые группы на хост.

AllFlash-конфигурация лишена серьезного недостатка — резкого падения IOPS и увеличения очереди дисковых запросов при увеличенном объеме операций произвольного доступа к данным. Так же, как и в пуле с быстрыми дисками операции записи проходят через кэш, а чтение осуществляется напрямую.

Теперь о главном отличии от остальных пулов. Данные каждой виртуальной машины зеркалируются внутри одного дата-центра и при этом синхронно реплицируются в другой, принадлежащий нам, дата-центр. Таким образом, даже серьезная авария, такая как полное нарушение связности между дата-центрами не станет проблемой. Даже полная потеря дата-центра не затронет данные.

Авария с полным отказом площадки — ситуация достаточно редкая, однако vSAN с честью может ее пережить, не потеряв данные. Гости проводимого нами мероприятия SelectelTechDay 2018 смогли собственными глазами увидеть, как кластер Stretched vSAN пережил полный отказ площадки. Виртуальные машины стали доступны уже через одну минуту после того, как все серверы на одной из площадок были выключены по питанию. Все механизмы сработали именно так, как было запланировано, а данные остались нетронутыми.

Отказ от привычной архитектуры хранения данных влечет за собой массу изменений. Одним из таких изменений стало появление новых виртуальных «сущностей», к которым относятся и witness appliance. Смысл этого решения в том, чтобы отслеживать процесс записи реплик данных и определять, какая из них является актуальной. При этом самих данных на witness-компонентах не хранится, только метаданные о процессе записи.

Этот механизм вступает в действие в случае аварии, когда в процессе репликации происходит сбой, результатом которого является рассинхронизация реплик.

Чтобы определить, какая из них содержит актуальную информацию, используется механизм определения кворума. Каждый компонент обладает «правом голоса», и ему присваивается некоторое количество голосов (1 и более). Такое же «право голоса» имеют и witness-компоненты, играющие роль арбитров, при возникновении спорной ситуации.

Кворум достигается только в том случае, когда для объекта доступна полная реплика и количество текущих «голосов» составляет более 50%.

Заключение
Выбор VMware vSAN, как системы хранения данных, стал для нас достаточно важным решением. Этот вариант прошел нагрузочное тестирование и проверку отказоустойчивости, прежде чем был включен в проект нашего облака на базе VMware.

По результатам тестов стало ясно, что заявленный функционал работает как положено и удовлетворяет всем требованиям нашей облачной инфраструктуры.

https://selectel.ru

Резервное копирование c помощью инструментов Veeam



Используйте возможности Veeam Backup&Replication для резервного копирования и восстановления виртуальных машин VMware, а также храните бэкапы в «Облачном репозитории Veeam Cloud Connect».

На сегодняшний день ни одна компания не пренебрегает бэкапами. Вирусы-шифровальщики, ошибки программного обеспечения, физическое повреждение или изъятие носителей информации могут стать причинами потери данных, без которых функционирование бизнеса затрудняется или даже приостанавливается. И, конечно, не стоит забывать про человеческий фактор — любой сотрудник может случайно удалить как простой документ, так и целую базу данных.

С развитием технологий акцент сценариев использования резервного копирования сместился от обеспечения надежного хранения данных к обеспечению непрерывности бизнеса.

Пару месяцев назад мы рассказывали о запуске в Selectel публичного облака на базе VMware. В июне мы запустили две новые услуги, отлично его дополняющие:

Резервное копирование как сервис
Вместе с повышением требований к непрерывности работы растет и объем хранимых данных, что становится проблемой для IT-инфраструктуры бизнеса. Чем больше бизнес зависит от IT-систем, тем большие убытки он понесет в случае потери данных и простоя, пока идет восстановление работоспособности.

Раньше единственной страховкой от «несчастных случаев» потери данных было использование и поддержание СХД (систем хранения данных): от покупки актуальных версий ПО до расширения штата системных администраторов.

Сегодня достаточно соблюдать ряд правил, благодаря которым бэкапы всегда будут своевременными, а заботу об инфраструктуре можно передать сервис-провайдеру.

Правила хорошего бэкапа
Возможность оперативно восстанавливать утраченные данные спасает часы и дни работы. Если же в это верится с трудом, прочитайте почти хрестоматийную историю Pixar.

Для предотвращения потери данных рекомендуется придерживаться следующих правил:

Автоматическое резервное копирование
Бэкап должен выполняться автоматически согласно установленному расписанию.
Обязательно проводите резервное копирование перед установкой нового ПО, модернизацией аппаратного обеспечения и при переносе данных.

Тестовое восстановление данных
Тестовое восстановление данных из бэкапа должно проводиться регулярно.
Каким бы надежным ни было ПО для резервного копирования, всегда остается вероятность ошибки, из-за которой восстановиться не получится. Частота тестового восстановления зависит от критичности данных, которые необходимо бэкапить.

Избавление от дублей
Устранение дубликатов должно проводиться для оптимизации пространства, занимаемого хранящимися резервными копиями.
Устранение дубликатов позволяет копировать только уникальные фрагменты данных (причем только один раз) и оптимизирует использование дискового пространства в СХД.

Правило «3-2-1»
  1. Иметь по меньшей мере три копии данных.
  2. Хранить копии на двух разных носителях.
  3. Хранить одну резервную копию на удаленной площадке.
Подробно об этом правиле еще в 2013 году рассказывали наши партнеры из Veeam.

Veeam Backup для облака на базе VMware
Первым делом мы запустили услугу резервного копирования для нашего облака на базе VMware на базе инструментария Veeam — признанного пионера и лидера в сегменте резервного копирования для виртуальных сред.

Veeam интегрирован с VMware, что позволяет удобно и быстро делать резервные копии без установки дополнительных агентов.

Наше решение представлено на схеме:

Подробнее о работе с нашей услугой читайте в базе знаний.

Возможности
  • Создание заданий на резервное копирование и восстановление доступно из консоли Veeam Backup Enterprise Manager.
  • Резервное копирование на уровне образа виртуальных машин (далее ВМ) с учетом состояния приложений.
  • Упрощенное резервное копирование работающих ВМ для архивирования.
  • Быстрое инкрементное копирование отдельных ВМ с помощью уже существующего задания резервного копирования.
  • Восстановление ВМ или vApp целиком.
  • Восстановление файлов и отдельных дисков.
  • Восстановление объектов приложений (SQL Server, Oracle).


Преимущества
  • Снижение RTO и RPO (допустимое время простоя сервиса в случае сбоя и допустимый объем возможных потерь данных в случае сбоя) за счет обеспечения высокой скорости восстановления и минимизации потерь данных в случае сбоя.
  • Уменьшение капитальных затрат на оборудование и его эксплуатацию ― все данные хранятся в облаке.
  • Снижение затрат на ПО — оплачиваются только необходимые ресурсы.



Облачный репозиторий Veeam Cloud Connect
Для клиентов, использующих Veeam on-premise в своей инфраструктуре, подойдет услуга хранения бэкапов в Облачном репозитории Selectel.

Примечание: решение подходит для клиентов, использующих Veeam Backup & Replication версии 9.5 и выше и Veeam Agent 2.0 и выше.

Наше решение работает следующим образом:

Подробнее о работе с нашей услугой читайте в базе знаний.

Преимущества
  • Отсутствие капитальных затрат, связанных с созданием собственной удаленной площадки.
  • Безопасность — все данные шифруются на стороне клиента.
  • Высокая надежность — Veeam Cloud Connect согласуется с правилом «3-2-1».
Более того, мы храним каждый бэкап в трех копиях на разных физических дисках!



Дальнейшие планы
Конечно, услугой резервного копирования для VMware мы не ограничимся.

Veeam позволяет проводить множество полезных операций:
  • миграция инфраструктуры VMware,
  • DRaaS — сервис аварийного восстановления инфраструктуры клиента,
  • бэкапы физических машин.
Кстати, за последние пару лет в Veeam очень сильно продвинулись в сфере резервного копирования физической инфраструктуры, и мы уже работаем над запуском услуги резервного копирования для выделенных серверов. Следите за новостями!
selectel.ru/services/additional/veeam-backups/
my.selectel.ru/

Как обеспечить непрерывную работу вашего бизнеса?



В апреле мы анонсировали новую услугу ― «Облако Selectel VMware». Это виртуальный отказоустойчивый и катастрофоустойчивый дата-центр на платформе VMware vSphere. Он позволяет нарастить мощности без капитальных или организационных затрат и оплачивать ресурсы по потреблению.

А теперь мы встречаем лето важным дополнением к «Облаку Selectel VMware» ― «Резервным копированием для Selectel VMware Cloud».

Что это и как работает
Резервное копирование или бэкапы ― регулярное создание копий данных и восстановление их в исходное состояние в случае сбоя. Если что-то пошло не так, всегда можно восстановить данные системы целиком или «достать» только нужный файл.

Услуга работает в паре с Selectel VMware Cloud. Данные виртуальных машин и приложений быстро копируются, надежно хранятся и восстанавливаются благодаря Veeam Backup & Replication.
Зачем делать бэкапы в облаке
  • Обеспечить высокую скорость восстановления и минимизировать потери данных в случае сбоя.
  • Уменьшить капитальные затраты на оборудование и его эксплуатацию ― все хранится в облаке.
  • Снизить риск простоя компании из-за потери доступа к значимым для бизнеса данным.

Для тех, кто хочет попробовать
Чтобы понять, подходит ли вам услуга, протестируйте ее в течение 2-х недель. В рамках тестового доступа можно создать бэкапы 10 виртуальных машин и занять до 1000 ГБ места в репозитории. Прежде чем оформлять заявку на бесплатный тест резервного копирования, создайте свой виртуальный дата-центр Selectel VMware Cloud.

selectel.ru/services/additional/veeam-backups/